全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks

DOI: 10.5194/asr-6-55-2011

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ramp events are large rapid variations within wind power time series. Ramp forecasting can benefit from specific strategies so as to particularly take into account these shifts in the wind power output dynamic. In the short-term context (characterized by prediction horizons from minutes to a few days), a Regime-Switching (RS) model based on Artificial Neural Nets (ANN) is proposed. The objective is to identify three regimes in the wind power time series: Ramp-up, Ramp-down and No-ramp regime. An on-line regime assessment methodology is also proposed, based on a local gradient criterion. The RS-ANN model is compared to a single-ANN model (without regime discrimination), concluding that the regime-switching strategy leads to significant improvements for one-hour ahead forecasts, mainly due to the improvements obtained during ramp-up events. Including other explanatory variables (NWP outputs, local measurements) during the regime assessment could eventually improve forecasts for further horizons.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133