全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Telomerase Efficiently Elongates Highly Transcribing Telomeres in Human Cancer Cells

DOI: 10.1371/journal.pone.0035714

Full-Text   Cite this paper   Add to My Lib

Abstract:

RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA). Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription.

References

[1]  Bah A, Wischnewski H, Shchepachev V, Azzalin CM (2011) The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res. doi:10.1093/nar/gkr1153.
[2]  Arora R, Brun CM, Azzalin CM (2011) TERRA: Long Noncoding RNA at Eukaryotic Telomeres. Prog Mol Subcell Biol 51: 65–94.
[3]  Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318: 798–801.
[4]  Luke B, Panza A, Redon S, Iglesias N, Li Z, et al. (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32: 465–477.
[5]  Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, et al. (2010) siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet 6: e1000986.
[6]  Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10: 228–236.
[7]  Greenwood J, Cooper JP (2011) Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast. Nucleic Acids Res. doi:10.1093/nar/gkr1155.
[8]  Farnung BO, Giulotto E, Azzalin CM (2010) Promoting transcription of chromosome ends. Transcription 1: 140–143.
[9]  Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, et al. (2009) CpG-island promoters drive transcription of human telomeres. RNA 15: 2186–2194.
[10]  Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17: 2776–2789.
[11]  Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, et al. (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8: 416–424.
[12]  Flynn RL, Centore RC, O'Sullivan RJ, Rai R, Tse A, et al. (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471: 532–536.
[13]  Poulet A, Pisano S, Faivre-Moskalenko C, Pei B, Tauran Y, et al. (2011) The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA. Nucleic Acids Res. doi:10.1093/nar/gkr1116.
[14]  Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38: 5797–5806.
[15]  Sandell LL, Gottschling DE, Zakian VA (1994) Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability. Proc Natl Acad Sci U S A 91: 12061–12065.
[16]  Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. Embo J 28: 2503–2510.
[17]  Porro A, Feuerhahn S, Reichenbach P, Lingner J (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 30: 4808–4817.
[18]  Iglesias N, Redon S, Pfeiffer V, Dees M, Lingner J, et al. (2011) Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Reports 12: 587–593.
[19]  Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, et al. (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Nat Acad Sci U S A 95: 14723–14728.
[20]  Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, et al. (2001) A highly selective telomerase inhibitor limiting human cancer cell proliferation. Embo J 20: 6958–6968.
[21]  Baird DM, Rowson J, Wynford-Thomas D, Kipling D (2003) Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33: 203–207.
[22]  Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, et al. (2009) Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138: 463–475.
[23]  Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, et al. (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552–556.
[24]  Arora R, Brun CM, Azzalin CM (2012) Transcription regulates telomere dynamics in human cancer cells. RNA. In press.
[25]  Barnett MA, Buckle VJ, Evans EP, Porter AC, Rout D, et al. (1993) Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res 21: 27–36.
[26]  Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, et al. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766–1769.
[27]  Azzalin CM, Lingner J (2008) Telomeres: the silence is broken. Cell Cycle 7: 1161–1165.
[28]  Ottaviani A, Gilson E, Magdinier F (2008) Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 90: 93–107.
[29]  Chawla R, Redon S, Raftopoulou C, Wischnewski H, Gagos S, et al. (2011) Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication. EMBO J 30: 4047–4058.
[30]  Azzalin CM (2012) UPF1: A leader at the end of chromosomes. Nucleus. PMID: 22156744.
[31]  Kim NW, Wu F (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25: 2595–2597.
[32]  Azzalin CM, Lingner J (2007) Molecular biology: damage control. Nature 448: 1001–1002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133