全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Viral Diversity and Diversification of Major Non-Structural Genes vif, vpr, vpu, tat exon 1 and rev exon 1 during Primary HIV-1 Subtype C Infection

DOI: 10.1371/journal.pone.0035491

Full-Text   Cite this paper   Add to My Lib

Abstract:

To assess the level of intra-patient diversity and evolution of HIV-1C non-structural genes in primary infection, viral quasispecies obtained by single genome amplification (SGA) at multiple sampling timepoints up to 500 days post-seroconversion (p/s) were analyzed. The mean intra-patient diversity was 0.11% (95% CI; 0.02 to 0.20) for vif, 0.23% (95% CI; 0.08 to 0.38) for vpr, 0.35% (95% CI; ?0.05 to 0.75) for vpu, 0.18% (95% CI; 0.01 to 0.35) for tat exon 1 and 0.30% (95% CI; 0.02 to 0.58) for rev exon 1 during the time period 0 to 90 days p/s. The intra-patient diversity increased gradually in all non-structural genes over the first year of HIV-1 infection, which was evident from the vif mean intra-patient diversity of 0.46% (95% CI; 0.28 to 0.64), vpr 0.44% (95% CI; 0.24 to 0.64), vpu 0.84% (95% CI; 0.55 to 1.13), tat exon 1 0.35% (95% CI; 0.14 to 0.56 ) and rev exon 1 0.42% (95% CI; 0.18 to 0.66) during the time period of 181 to 500 days p/s. There was a statistically significant increase in viral diversity for vif (p = 0.013) and vpu (p = 0.002). No associations between levels of viral diversity within the non-structural genes and HIV-1 RNA load during primary infection were found. The study details the dynamics of the non-structural viral genes during the early stages of HIV-1C infection.

References

[1]  Herbeck JT, Rolland M, Liu Y, McLaughlin S, McNevin J, et al. (2011) Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes. J Virol 85: 7523–7534.
[2]  Barroso H, Taveira N (2005) Evidence for negative selective pressure in HIV-2 evolution in vivo. Infect Genet Evol 5: 239–246.
[3]  Iwami S, Nakaoka S, Takeuchi Y (2008) Viral diversity limits immune diversity in asymptomatic phase of HIV infection. Theor Popul Biol 73: 332–341.
[4]  Mani I, Gilbert P, Sankale JL, Eisen G, Mboup S, et al. (2002) Intrapatient diversity and its correlation with viral setpoint in human immunodeficiency virus type 1 CRF02_A/G-IbNG infection. J Virol 76: 10745–10755.
[5]  Miller V (2005) Commentary: Sifting through the maze of viral and host diversity and HIV/AIDS clinical progression. Int J Epidemiol 34: 584–585.
[6]  Nowak MA, Anderson RM, McLean AR, Wolfs TF, Goudsmit J, et al. (1991) Antigenic diversity thresholds and the development of AIDS. Science 254: 963–969.
[7]  Nowak MA, May RM (1991) Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math Biosci 106: 1–21.
[8]  Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, et al. (1999) Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73: 10489–10502.
[9]  Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, et al. (2009) Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 206: 1273–1289.
[10]  Michael NL, Chang G, d’Arcy LA, Ehrenberg PK, Mariani R, et al. (1995) Defective accessory genes in a human immunodeficiency virus type 1-infected long-term survivor lacking recoverable virus. J Virol 69: 4228–4236.
[11]  Guillon C, Stankovic K, Ataman-Onal Y, Biron F, Verrier B (2006) Evidence for CTL-mediated selection of Tat and Rev mutants after the onset of the asymptomatic period during HIV type 1 infection. AIDS Res Hum Retroviruses 22: 1283–1292.
[12]  Hutto C, Zhou Y, He J, Geffin R, Hill M, et al. (1996) Longitudinal studies of viral sequence, viral phenotype, and immunologic parameters of human immunodeficiency virus type 1 infection in perinatally infected twins with discordant disease courses. J Virol 70: 3589–3598.
[13]  Caly L, Saksena NK, Piller SC, Jans DA (2008) Impaired nuclear import and viral incorporation of Vpr derived from a HIV long-term non-progressor. Retrovirology 5: 67.
[14]  Chang LJ, Zhang C (1995) Infection and replication of Tat- human immunodeficiency viruses: genetic analyses of LTR and tat mutations in primary and long-term human lymphoid cells. Virology 211: 157–169.
[15]  Iversen AK, Shpaer EG, Rodrigo AG, Hirsch MS, Walker BD, et al. (1995) Persistence of attenuated rev genes in a human immunodeficiency virus type 1-infected asymptomatic individual. J Virol 69: 5743–5753.
[16]  Lum JJ, Cohen OJ, Nie Z, Weaver JG, Gomez TS, et al. (2003) Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 111: 1547–1554.
[17]  Mologni D, Citterio P, Menzaghi B, Zanone Poma B, Riva C, et al. (2006) Vpr and HIV-1 disease progression: R77Q mutation is associated with long-term control of HIV-1 infection in different groups of patients. AIDS 20: 567–574.
[18]  Papathanasopoulos MA, Patience T, Meyers TM, McCutchan FE, Morris L (2003) Full-length genome characterization of HIV type 1 subtype C isolates from two slow-progressing perinatally infected siblings in South Africa. AIDS Res Hum Retroviruses 19: 1033–1037.
[19]  Wang B, Mikhail M, Dyer WB, Zaunders JJ, Kelleher AD, et al. (2003) First demonstration of a lack of viral sequence evolution in a nonprogressor, defining replication-incompetent HIV-1 infection. Virology 312: 135–150.
[20]  Yedavalli VR, Ahmad N (2001) Low conservation of functional domains of HIV type 1 vif and vpr genes in infected mothers correlates with lack of vertical transmission. AIDS Res Hum Retroviruses 17: 911–923.
[21]  Novitsky V, Ndung’u T, Wang R, Bussmann H, Chonco F, et al. (2011) Extended high viremics: a substantial fraction of individuals maintain high plasma viral RNA levels after acute HIV-1 subtype C infection. AIDS 25: 1515–1522.
[22]  Novitsky V, Wang R, Bussmann H, Lockman S, Baum M, et al. (2010) HIV-1 subtype C-infected individuals maintaining high viral load as potential targets for the “test-and-treat” approach to reduce HIV transmission. PLoS One 5: e10148.
[23]  Novitsky V, Lagakos S, Herzig M, Bonney C, Kebaabetswe L, et al. (2009) Evolution of proviral gp120 over the first year of HIV-1 subtype C infection. Virology 383: 47–59.
[24]  Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, et al. (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17: 1871–1879.
[25]  Liu SL, Rodrigo AG, Shankarappa R, Learn GH, Hsu L, et al. (1996) HIV quasispecies and resampling. Science 273: 415–416.
[26]  Dugan KA, Lawrence HS, Hares DR, Fisher CL, Budowle B (2002) An improved method for post-PCR purification for mtDNA sequence analysis. J Forensic Sci 47: 811–818.
[27]  Rose PP, Korber BT (2000) Detecting hypermutations in viral sequences with an emphasis on G –> A hypermutation. Bioinformatics 16: 400–401.
[28]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
[29]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
[30]  REGA HIV-1 & 2 Automated Subtyping Tool (Version 2.0). 1: Available: http://jose.med.kuleuven.be/genotypetool?/html/subtypinghiv.html. Accessed 2011 Nov.
[31]  Novitsky V, Woldegabriel E, Kebaabetswe L, Rossenkhan R, Mlotshwa B, et al. (2009) Viral load and CD4+ T-cell dynamics in primary HIV-1 subtype C infection. J Acquir Immune Defic Syndr 50: 65–76.
[32]  Novitsky V, Wang R, Margolin L, Baca J, Rossenkhan R, et al. (2011) Transmission of single and multiple viral variants in primary HIV-1 subtype C infection. PLoS One 6: e16714.
[33]  Rong L, Gilchrist MA, Feng Z, Perelson AS (2007) Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility. J Theor Biol 247: 804–818.
[34]  Rousseau CM, Daniels MG, Carlson JM, Kadie C, Crawford H, et al. (2008) HLA class I-driven evolution of human immunodeficiency virus type 1 subtype c proteome: immune escape and viral load. J Virol 82: 6434–6446.
[35]  Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, et al. (2008) Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J Virol 82: 3952–3970.
[36]  Bell CM, Connell BJ, Capovilla A, Venter WD, Stevens WS, et al. (2007) Molecular characterization of the HIV type 1 subtype C accessory genes vif, vpr, and vpu. AIDS Res Hum Retroviruses 23: 322–330.
[37]  Romani B, Glashoff R, Engelbrecht S (2009) Molecular and phylogenetic analysis of HIV type 1 vpr sequences of South African strains. AIDS Res Hum Retroviruses 25: 357–362.
[38]  Scriba TJ, Treurnicht FK, Zeier M, Engelbrecht S, van Rensburg EJ (2001) Characterization and phylogenetic analysis of South African HIV-1 subtype C accessory genes. AIDS Res Hum Retroviruses 17: 775–781.
[39]  Altfeld M, Addo MM, Eldridge RL, Yu XG, Thomas S, et al. (2001) Vpr is preferentially targeted by CTL during HIV-1 infection. J Immunol 167: 2743–2752.
[40]  Brumme ZL, Brumme CJ, Heckerman D, Korber BT, Daniels M, et al. (2007) Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog 3: e94.
[41]  Kim GJ, Lee HS, Hong KJ, Kim SS (2010) Dynamic correlation between CTL response and viral load in primary human immunodeficiency virus-1 infected Koreans. Virol J 7: 239.
[42]  Miura T, Brumme ZL, Brockman MA, Rosato P, Sela J, et al. (2010) Impaired replication capacity of acute/early viruses in persons who become HIV controllers. J Virol 84: 7581–7591.
[43]  Novitsky V, Rybak N, McLane MF, Gilbert P, Chigwedere P, et al. (2001) Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J Virol 75: 9210–9228.
[44]  Wood N, Bhattacharya T, Keele BF, Giorgi E, Liu M, et al. (2009) HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 5: e1000414.
[45]  Delwart E, Magierowska M, Royz M, Foley B, Peddada L, et al. (2002) Homogeneous quasispecies in 16 out of 17 individuals during very early HIV-1 primary infection. AIDS 16: 189–195.
[46]  Gottlieb GS, Heath L, Nickle DC, Wong KG, Leach SE, et al. (2008) HIV-1 variation before seroconversion in men who have sex with men: analysis of acute/early HIV infection in the multicenter AIDS cohort study. J Infect Dis 197: 1011–1015.
[47]  Verhofstede C, Demecheleer E, De Cabooter N, Gaillard P, Mwanyumba F, et al. (2003) Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A. J Virol 77: 3050–3057.
[48]  Zhu T, Mo H, Wang N, Nam DS, Cao Y, et al. (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261: 1179–1181.
[49]  Bibollet-Ruche F, Loussert-Ajaka I, Simon F, Mboup S, Ngole EM, et al. (1998) Genetic characterization of accessory genes from human immunodeficiency virus type 1 group O strains. AIDS Res Hum Retroviruses 14: 951–961.
[50]  Jacobs GB, Nistal M, Laten A, van Rensburg EJ, Rethwilm A, et al. (2008) Molecular analysis of HIV type 1 vif sequences from Cape Town, South Africa. AIDS Res Hum Retroviruses 24: 991–994.
[51]  Wieland U, Seelhoff A, Hofmann A, Kuhn JE, Eggers HJ, et al. (1997) Diversity of the vif gene of human immunodeficiency virus type 1 in Uganda. J Gen Virol 78 (Pt 2): 393–400.
[52]  Bello G, Casado C, Garcia S, Rodriguez C, del Romero J, et al. (2004) Plasma RNA viral load is not associated with intrapatient quasispecies heterogeneity in HIV-1 infection. Arch Virol 149: 1761–1771.
[53]  Chamberland A, Sylla M, Boulassel MR, Baril JG, Cote P, et al. (2011) Effect of antiretroviral therapy on HIV-1 genetic evolution during acute infection. Int J STD AIDS 22: 146–150.
[54]  Rambaut A (2008) FigTree v1.1.2. http://tree.bio.ed.ac.uk/software/figtre?e.
[55]  Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55: 539–552.
[56]  Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030–11035.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133