Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls–left and right lateral, forward trips, and backward slips–while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.
References
[1]
Sixsmith A, Johnson N (2004) A smart sensor to detect the falls of the elderly. Pervasive Computing, IEEE 3: 42–47.
[2]
Tideiksaar R (1998) Falling in Old Age: Prevention and Management, 2nd ed. Heidelberg, Germany: Springer-Verlag.
[3]
Tinetti ME, Doucette J, Claus E, Marottoli R (1995) Risk factors for serious injury during falls by older persons in the community. J Am Geriatr Soc 43: 1214–1221.
[4]
Sadigh S, Reimers A, Andersson R, Laflamme L (2004) Falls and Fall-Related Injuries Among the Elderly: A Survey of Residential-Care Facilities in a Swedish Municipality. Journal of Community Health 29: 129–140.
[5]
Ryynanen OP, Kivela SL, Honkanen R, Laippala P (1992) Falls and Lying Helpless in the Elderly. Z Gerontology 25: 278–282.
[6]
Spice CL, Morotti W, George S, Dent THS, Rose J, et al. (2009) The Winchester falls project: a randomised controlled trial of secondary prevention of falls in older people*. Age and Ageing 38: 33–40.
[7]
Vellas BJ, Wayne SJ, Romero LJ, Baumgartner RN, Garry PJ (1997) Fear of falling and restriction of mobility in elderly fallers. Age and Ageing 26: 189–193.
[8]
Mann R, Birks Y, Hall J, Torgerson D, Watt I (2006) Exploring the relationship between fear of falling and neuroticism: a cross-sectional study in community-dwelling women over 70. Age and Ageing 35: 143–147.
[9]
Delbaere K, Crombez G, Vanderstraeten G, Willems T, Cambier D (2004) Fear-related avoidance of activities, falls and physical frailty. A prospective community-based cohort study. Age and Ageing 33: 368–373.
[10]
Gillespie LD, Gillespie WJ, Robertson MC, Lamb SE, Cumming RG, et al. (2003) Interventions for preventing falls in elderly people. Cochrane Database Syst Rev. CD000340 p.
[11]
Seguin R, Nelson ME (2003) The benefits of strength training for older adults. American Journal of Preventive Medicine 25: 141–149.
[12]
Campbell AJ, Robertson MC, Gardner MM, Norton RN, Buchner DM (1999) Falls prevention over 2 years: a randomized controlled trial in women 80 years and older. Age Ageing 28: 513–518.
[13]
Peek-Asa C, Zwerling C (2003) Role of Environmental Interventions in Injury Control and Prevention. Epidemiologic Reviews 25: 77–89.
[14]
Woolcott JC, Richardson KJ, Wiens MO, Patel B, Marin J, et al. (2009) Meta-analysis of the Impact of 9 Medication Classes on Falls in Elderly Persons. Arch Intern Med 169: 1952–1960.
[15]
Lopez-Torres Hidalgo J, Group A (2011) Prevention of falls and fractures in old people by administration of calcium and vitamin D. Randomized clinical trial. BMC Public Health 11: 910.
[16]
Bourke AK, O'Brien JV, Lyons GM (2007) Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26: 194–199.
[17]
Lee RYW, Carlisle AJ (2011) Detection of falls using accelerometers and mobile phone technology. Age and Ageing 40: 690–696.
[18]
Bourke AK, Torrent M, Parra X, Catala A, Nelson J (2011) Fall algorithm development using kinematic parameters measured from simulated falls performed in a quasi-realistic environment using accelerometry. Conf Proc IEEE Eng Med Biol Soc. 2011: 4449-4452.
[19]
Ying L, Redmond SJ, Narayanan MR, Lovell NH (2011) Classification between non-multiple fallers and multiple fallers using a triaxial accelerometry-based system. Conf Proc IEEE Eng Med Biol Soc 2001: 1499-1502.
[20]
Lustrek M, Kaluza B (2009) Fall Detection and Activity Recognition with Machine Learning. Informatica 33: 205–212.
[21]
Brezmes T, Gorricho J-L, Cotrina J (2009) Activity Recognition from Accelerometer Data on a Mobile Phone. In: Omatu S, Rocha M, Bravo J, Fernández F, Corchado E et al, editors. IWANN '09 Proceedings of the 10th International Work-Conference on Artificial Neural Networks: Part II: Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Berlin: Springer. pp. 796–799.
[22]
Gyorbiro N, Fabian A, Homanyi G (2009) An Activity Recognition System For Mobile Phones. Mobile Networks and Applications 14: 82–91.
[23]
Bieber G, Voskamp J, Urban B (2009) Activity Recognition for Everyday Life on Mobile Phones. In: Stephanidis C, editor. Proceedings of the 5th UAHCI International Conference: Universal Access in Human-Computer Interaction. Intelligent and Ubiquitous Interaction Environments.: Berlin: Springer. pp. 289–296.
[24]
Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. SIGKDD Explor Newsl 12: 74–82.
[25]
Wang Y, Lin J, Annavaram M, Jacobson QA, Hong J, et al. (2009) A framework of energy efficient mobile sensing for automatic user state recognition. In: systems Proceedingsofthe7thinternationalconferen?ceonMobile, applications , editors. and services. Krakow, Poland: ACM. pp. 179–192.
[26]
Tolkiehn M, Atallah L, Lo B, Yang G-Z (2011) Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor. Conf Proc IEEE Eng Med Biol Soc 369-372:
[27]
Scuffham P, Chaplin S, Legood R (2003) Incidence and costs of unintentional falls in older people in the United Kingdom. Journal of Epidemiology and Community Health 57: 740–744.
[28]
Census Bureau U.S (2010) Population Data Public Web Site.
[29]
Sposaro F, Tyson G (2009) iFall: An android application for fall monitoring and response. Conf Proc IEEE Eng Med Biol Soc 2009: 6119-6122.
[30]
Jiangpeng D, Xiaole B, Zhimin Y, Zhaohui S, Dong X (2010) PerFallD: A pervasive fall detection system using mobile phones. IEEE Int Conf on Pervasive Comp and Comm 2010: 292-297.
[31]
Fernandes HL, Albert MV, Kording KP (2011) Measuring Generalization of Visuomotor Perturbations in Wrist Movements Using Mobile Phones. PLoS ONE 6: e20290.
[32]
Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2: 1–27.
[33]
Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27: 957–968.