全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo

DOI: 10.1371/journal.pone.0036583

Full-Text   Cite this paper   Add to My Lib

Abstract:

In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.

References

[1]  Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, et al. (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12: 106–109.
[2]  Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75: 59–72.
[3]  Kim JJ, Accili D (2002) Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res 12: 84–90.
[4]  Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 51: 1–24.
[5]  Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6: e1000857.
[6]  Broughton S, Partridge L (2009) Insulin/IGF-like signalling, the central nervous system and aging. Biochem J 418: 1–12.
[7]  Geminard C, Rulifson EJ, Leopold P (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10: 199–207.
[8]  Kim SK, Rulifson EJ (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431: 316–320.
[9]  Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167: 311–323.
[10]  Becker A, Schloder P, Steele JE, Wegener G (1996) The regulation of trehalose metabolism in insects. Experientia 52: 433–439.
[11]  Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, et al. (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114: 739–749.
[12]  Zinke I, Kirchner C, Chao LC, Tetzlaff MT, Pankratz MJ (1999) Suppression of food intake and growth by amino acids in Drosophila: the role of pumpless, a fat body expressed gene with homology to vertebrate glycine cleavage system. Development 126: 5275–5284.
[13]  Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21: 6162–6173.
[14]  Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12: 1293–1300.
[15]  Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120.
[16]  Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356–362.
[17]  Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, et al. (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354: 2552–2563.
[18]  Polonsky KS (2006) Retinol-binding protein 4, insulin resistance, and type 2 diabetes. N Engl J Med 354: 2596–2598.
[19]  van Dam RM, Hu FB (2007) Lipocalins and insulin resistance: etiological role of retinol-binding protein 4 and lipocalin-2? Clin Chem 53: 5–7.
[20]  Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, et al. (2007) Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 53: 34–41.
[21]  Hull-Thompson J, Muffat J, Sanchez D, Walker DW, Benzer S, et al. (2009) Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet 5: e1000460.
[22]  Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, et al. (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11: 213–221.
[23]  Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, et al. (2004) Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the american diabetes association. Diabetes Care 27: 2266–2271.
[24]  Gross LS, Li L, Ford ES, Liu S (2004) Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr 79: 774–779.
[25]  Mohan V, Radhika G, Sathya RM, Tamil SR, Ganesan A, et al. (2009) Dietary carbohydrates, glycaemic load, food groups and newly detected type 2 diabetes among urban Asian Indian population in Chennai, India (Chennai Urban Rural Epidemiology Study 59). Br J Nutr 102: 1498–1506.
[26]  Odegaard AO, Koh WP, Arakawa K, Yu MC, Pereira MA (2010) Soft drink and juice consumption and risk of physician-diagnosed incident type 2 diabetes: the Singapore Chinese Health Study. Am J Epidemiol 171: 701–708.
[27]  Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9: 193–205.
[28]  Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375: 2267–2277.
[29]  Abu-Elheiga L, Oh W, Kordari P, Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A 100: 10207–10212.
[30]  Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX, et al. (2005) Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2: 55–65.
[31]  Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, et al. (2006) Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 116: 817–824.
[32]  Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, et al. (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech.
[33]  Erikstrup C, Mortensen OH, Pedersen BK (2006) Retinol-binding protein 4 and insulin resistance. N Engl J Med 355: 1393–1394. author reply 1394–1395.
[34]  Oh J (2006) Retinol-binding protein 4 and insulin resistance. N Engl J Med 355: 1394. author reply 1394–1395.
[35]  Takashima N, Tomoike H, Iwai N (2006) Retinol-binding protein 4 and insulin resistance. N Engl J Med 355: 1392. author reply 1394–1395.
[36]  Munkhtulga L, Nakayama K, Utsumi N, Yanagisawa Y, Gotoh T, et al. (2007) Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia. Hum Genet 120: 879–888.
[37]  Brankatschk M, Eaton SLipoprotein particles cross the blood-brain barrier in Drosophila. J Neurosci 30: 10441–10447.
[38]  Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, et al. (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7: 10.
[39]  Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2: 239–249.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133