Abacus experts are able to mentally calculate multi-digit numbers rapidly. Some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor strategy during abacus mental calculation. However, no study up to now has attempted to dissociate temporally the visuospatial neural process from the visuomotor neural process during abacus mental calculation. In the present study, an abacus expert performed the mental addition tasks (8-digit and 4-digit addends presented in visual or auditory modes) swiftly and accurately. The 100% correct rates in this expert’s task performance were significantly higher than those of ordinary subjects performing 1-digit and 2-digit addition tasks. ERPs, EEG source localizations, and fMRI results taken together suggested visuospatial and visuomotor processes were sequentially arranged during the abacus mental addition with visual addends and could be dissociated from each other temporally. The visuospatial transformation of the numbers, in which the superior parietal lobule was most likely involved, might occur first (around 380 ms) after the onset of the stimuli. The visuomotor processing, in which the superior/middle frontal gyri were most likely involved, might occur later (around 440 ms). Meanwhile, fMRI results suggested that neural networks involved in the abacus mental addition with auditory stimuli were similar to those in the visual abacus mental addition. The most prominently activated brain areas in both conditions included the bilateral superior parietal lobules (BA 7) and bilateral middle frontal gyri (BA 6). These results suggest a supra-modal brain network in abacus mental addition, which may develop from normal mental calculation networks.
References
[1]
Menninger K (1992) Number words and number symbols: A cultural history of numbers. Mineola, NY: Dover Publications.
[2]
Hatano G, Miyake Y, Binks MG (1977) Performance of expert abacus operators. Cognition 5: 47–55.
[3]
Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21: 355–361.
[4]
Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14: 218–224.
[5]
Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science 284: 970–974.
[6]
Gruber O, Indefrey P, Steinmetz H, Kleinschmidt A (2001) Dissociating Neural Correlates of Cognitive Components in Mental Calculation. Cereb Cortex 11: 350–359.
[7]
Iguchi Y, Hashimoto I (2000) Sequential information processing during a mental arithmetic is reflected in the time course of event-related brain potentials. Clin Neurophysiol 111: 204–213.
[8]
Zago L, Pesenti M, Mellet E, Crivello F, Mazoyer B, et al. (2001) Neural correlates of simple and complex mental calculation. Neuroimage 13: 314–327.
[9]
Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20: 487–506.
[10]
Rickard TC, Romero SG, Basso G, Wharton C, Flitman S, et al. (2000) The calculating brain: an fMRI study. Neuropsychologia 38: 325–335.
[11]
Rueckert L, Lange N, Partiot A, Appollonio I, Litvan I, et al. (1996) Visualizing cortical activation during mental calculation with functional MRI. Neuroimage 3: 97–103.
[12]
Pinel P, Dehaene S (2010) Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. J Cogn Neurosci 22: 48–66.
[13]
Stigler JW (1984) Mental abacus: The effect of abacus training on Chinese children’s mental calculation. Cognitive Psychol 16: 145–176.
[14]
Hatano G, Osawa K (1983) Digit memory of grand experts in abacus-derived mental calculation. Cognition 15: 95–110.
[15]
Hatta T, Hirose T, Ikeda K, Fukuhara H (1989) Digit memory of Soroban experts: Evidence of utilization of mental imagery. Appl Cognit Psychol 3: 23–33.
[16]
Chen F, Hu Z, Zhao X, Wang R, Yang Z, et al. (2006) Neural correlates of serial abacus mental calculation in children: a functional MRI study. Neurosci Lett 403: 46–51.
[17]
Hanakawa T, Honda M, Okada T, Fukuyama H, Shibasaki H (2003) Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage 19: 296–307.
[18]
Tanaka S, Michimata C, Kaminaga T, Honda M, Sadato N (2002) Superior digit memory of abacus experts: an event-related functional MRI study. Neuroreport 13: 2187–2191.
[19]
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Meth 134: 9–21.
[20]
Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Exp Clin Pharmacol 24 Suppl D. pp. 5–12.
[21]
Godinho F, Magnin M, Frot M, Perchet C, Garcia-Larrea L (2006) Emotional modulation of pain: is it the sensation or what we recall? J Neurosci 26: 11454–11461.
[22]
Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35: 346–355.
[23]
Ku Y, Hong B, Gao X, Gao S (2010) Spectra-temporal patterns underlying mental addition: an ERP and ERD/ERS study. Neurosci Lett 472: 5–10.
[24]
Frank MC, Barner D (2011) Representing exact number visually using mental abacus. J Exp Psychol Gen 141: 134–149.
[25]
Potts GF (2004) An ERP index of task relevance evaluation of visual stimuli. Brain Cogn 56: 5–13.
[26]
Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8: 2201–2211.
[27]
Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, et al. (2004) Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry 161: 1603–1611.
[28]
Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383: 254–256.
[29]
Pauli P, Lutzenberger W, Rau H, Birbaumer N, Rickard TC, et al. (1994) Brain potentials during mental arithmetic: effects of extensive practice and problem difficulty. Brain Res Cogn Brain Res 2: 21–29.
[30]
Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33: 475–487.
[31]
Harris IM, Egan GF, Sonkkila C, Tochon-Danguy HJ, Paxinos G, et al. (2000) Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain 123 (Pt 1): 65–73.
[32]
Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12: 217–230.
[33]
Oshio R, Tanaka S, Sadato N, Sokabe M, Hanakawa T, et al. (2010) Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information. Neuroimage 49: 1108–1115.
[34]
Langan J, Seidler RD (2011) Age differences in spatial working memory contributions to visuomotor adaptation and transfer. Behav Brain Res 225: 160–168.
[35]
Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD (2011) Failure to engage spatial working memory contributes to age-related declines in visuomotor learning. J Cogn Neurosci 23: 11–25.
[36]
Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, et al. (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18: 1827–1840.
[37]
Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, et al. (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17: 353–362.
[38]
Celsis P, Boulanouar K, Doyon B, Ranjeva JP, Berry I, et al. (1999) Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage 9: 135–144.
[39]
Baddeley A (1992) Working memory. Science 255: 556–559.
[40]
Lemaire P, Abdi H, Fayol M (1996) The role of working memory resources in simple cognitive arithmetic. Eur J Cognit Psychol 8: 73–104.
[41]
De Rammelaere S, Stuyven E, Vandierendonck A (1999) The contribution of working memory resources in the verification of simple mental arithmetic sums. Psychol Res 62: 72–77.
[42]
De Rammelaere S, Stuyven E, Vandierendonck A (2001) Verifying simple arithmetic sums and products: Are the phonological loop and the central executive involved? Memory & Cognition 29: 267–273.
[43]
Seitz K, Schumann-Hengsteler R (2000) Mental multiplication and working memory. Eur J Cognit Psychol 12: 552–570.
[44]
Logie RH, Gilhooly KJ, Wynn V (1994) Counting on working memory in arithmetic problem solving. Memory & Cognition 22: 395–410.
[45]
Furst AJ, Hitch GJ (2000) Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & Cognition 28: 774–782.
[46]
Dehaene S (2005) Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In: Dehaene S, Duhamel JR, M H, G R, editors. From monkey brain to human brain. Cambridge, MA: MIT Press. pp. 133–157.
[47]
Chochon F, Cohen L, van de Moortele PF, Dehaene S (1999) Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci 11: 617–630.
[48]
Rivera SM, Reiss AL, Eckert MA, Menon V (2005) Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb Cortex 15: 1779–1790.
[49]
Hu Y, Geng F, Tao L, Hu N, Du F, et al. (2011) Enhanced white matter tracts integrity in children with abacus training. Hum Brain Ma 32: 10–21.