全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Comparative SILAC Proteomic Analysis of Trypanosoma brucei Bloodstream and Procyclic Lifecycle Stages

DOI: 10.1371/journal.pone.0036619

Full-Text   Cite this paper   Add to My Lib

Abstract:

The protozoan parasite Trypanosoma brucei has a complex digenetic lifecycle between a mammalian host and an insect vector, and adaption of its proteome between lifecycle stages is essential to its survival and virulence. We have optimized a procedure for growing Trypanosoma brucei procyclic form cells in conditions suitable for stable isotope labeling by amino acids in culture (SILAC) and report a comparative proteomic analysis of cultured procyclic form and bloodstream form T. brucei cells. In total we were able to identify 3959 proteins and quantify SILAC ratios for 3553 proteins with a false discovery rate of 0.01. A large number of proteins (10.6%) are differentially regulated by more the 5-fold between lifecycle stages, including those involved in the parasite surface coat, and in mitochondrial and glycosomal energy metabolism. Our proteomic data is broadly in agreement with transcriptomic studies, but with significantly larger fold changes observed at the protein level than at the mRNA level.

References

[1]  Simarro P, Diarra A, Ruiz Postigo J, Franco J, Jannin J (2011) The Human African Trypanosomiasis control and Surveillance Programme of the WHO 2000–2009: The Way Forward. PLoS Negl Trop Dis 5: e1007.
[2]  Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH (2007) Target assessment for antiparasitic drug discovery. Trends Parasitol 23: 589–595.
[3]  Wirtz E, Leal S, Ochatt C, Cross GAM (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol 99: 89–101.
[4]  Carrington M (2009) How African trypanosomes evade mammalian defences. Parasites. pp. 8–11.
[5]  Gunzl A, Bruderer T, Laufer G, Schimanski B, Tu L, et al. (2003) RNA polymerase I transcribes procyclin genes and variant surface glycoprotein expression sites in Trypanosoma brucei. Eukaryot Cell 2: 542–551.
[6]  Clayton C, Shapira M (2007) Post-translational regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156: 93–101.
[7]  Lemercier G, Espiau B, Ruiz FA, Vieira M, Luo S, et al. (2004) A Pyrophosphatase Regulating Polyphosphate Metabolism in Acidocalcisomes Is Essential for Trypanosoma brucei Virulence in Mice. J Biol Chem 279: 3420–3425.
[8]  Colasante C, Robles A, Li C-H, Schwede A, Benz C, et al. (2007) Regulated expression of glycosomal phosphoglycerate kinase in Trypanosoma brucei. Mol Biochem Parasitol 2007: 193–204. pp. 193–204.
[9]  Clayton C (2002) Life without transcriptional control? from fly to man and back again. EMBO J 21: 1881–1888.
[10]  Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M (2009) Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10: 482.
[11]  Kabini S, Fenn K, Ross A, Ivens A, Smith TK, et al. (2009) Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10: 427.
[12]  Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C (2009) Transcriptome analysis of differentiating trypanasomes reveals the existance of multiple post-transcriptional regulons. BMC Genomics 10: 495.
[13]  Ong S, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1: 376–386.
[14]  Brun R, Schonenberger M (1979) Cultivation and in vivo cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop 36: 289–292.
[15]  Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universial sample preparation method for proteome analysis. Nat Meth 6: 359–362.
[16]  Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualised p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotech 26: 1367–1372.
[17]  Cox J, Neuhausert N, Michalskit A, Scheltemat RA, Olsen JV, et al. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794–1805.
[18]  Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochem Biophys Acta 1763: 1463–1477.
[19]  Besteiro S, Barrett MP, Riviere L, Bringaud F (2005) Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trend Parasitol 21: 185–191.
[20]  Mayho M, Fenn K, Craddy P, Crosswaite S, Matthews KR (2006) Post-transcriptional control of nuclear-encoded cytochrome oxidase subunits in Trypanosoma brucei: evidence for genome-wide conservation of life-cycle stage-specific regulatory elements. Nucleic Acid Res 2006: 5312–5324. pp. 5312–5324.
[21]  Zeigelbauer K, Overath P (1992) Identification of invarient surface glycoprotein in the bloodstream stage of Trypanosoma brucei. J Biol Chem 267: 10791–10796.
[22]  Acosta-Serrano A, Vassella E, Liniger M, Renggli CK, Brun R, et al. (2001) The surface coat of procyclic Trypanosoma brucei: Programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci USA 98: 1513–1518.
[23]  Carrington M, Carnall N, Crow MS, Gaud A, Redpath MB, et al. (1998) The properties and functions of the glycosylphosphatidylinositol-phospholipa?seC in Trypanosoma brucei. Mol Biochem Parasitol 91: 153–164.
[24]  Guther MLS, Ferguson MAJ (1995) The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J 14: 3080–3093.
[25]  Gibson WC, Swinkels BW, Borst P (1988) Post-transcriptional control of the differential expression of phosphoglycerate kinase genes in Trypanosoma brucei. J Mol Biol 201: 315–325.
[26]  Harsha HC, Molina H, Pandey A (2008) Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protocols 3: 505–506.
[27]  Greig N, Wyllie S, Patterson S, Fairlamb AF (2008) A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J 276: 376–386.
[28]  Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acid Res 38: D457–D462.
[29]  Martin D, Brun C, Remy E, Mouren P, Thieffry D, et al. (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5: R101.
[30]  Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, et al. (2011) High-Throughput phenotyping using parallel sequencing of RNA interference targets in the African Trypanosome. Genome Res 21: 915–924.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133