全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Detection of Retroviral Super-Infection from Non-Invasive Samples

DOI: 10.1371/journal.pone.0036570

Full-Text   Cite this paper   Add to My Lib

Abstract:

While much attention has been focused on the molecular epidemiology of retroviruses in wild primate populations, the correlated question of the frequency and nature of super-infection events, i.e., the simultaneous infection of the same individual host with several strains of the same virus, has remained largely neglected. In particular, methods possibly allowing the investigation of super-infection from samples collected non-invasively (such as faeces) have never been properly compared. Here, we fill in this gap by assessing the costs and benefits of end-point dilution PCR (EPD-PCR) and multiple bulk-PCR cloning, as applied to a case study focusing on simian foamy virus super-infection in wild chimpanzees (Pan troglodytes). We show that, although considered to be the gold standard, EPD-PCR can lead to massive consumption of biological material when only low copy numbers of the target are expected. This constitutes a serious drawback in a field in which rarity of biological material is a fundamental constraint. In addition, we demonstrate that EPD-PCR results (single/multiple infection; founder strains) can be well predicted from multiple bulk-PCR clone experiments, by applying simple statistical and network analyses to sequence alignments. We therefore recommend the implementation of the latter method when the focus is put on retroviral super-infection and only low retroviral loads are encountered.

References

[1]  Van Heuverswyn F, Peeters M (2007) The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 9: 338–346.
[2]  Leendertz SA, Junglen S, Hedemann C, Goffe A, Calvignac S, et al. (2010) High prevalence, coinfection rate, and genetic diversity of retroviruses in wild red colobus monkeys (Piliocolobus badius badius) in Tai National Park, Cote d’Ivoire. J Virol 84: 7427–7436.
[3]  Calattini S, Nerrienet E, Mauclere P, Georges-Courbot MC, Saib A, et al. (2004) Natural simian foamy virus infection in wild-caught gorillas, mandrills and drills from Cameroon and Gabon. J Gen Virol 85: 3313–3317.
[4]  Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, et al. (2008) Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog 4: e1000097.
[5]  Meertens L, Rigoulet J, Mauclere P, Van Beveren M, Chen GM, et al. (2001) Molecular and phylogenetic analyses of 16 novel simian T cell leukemia virus type 1 from Africa: close relationship of STLV-1 from Allenopithecus nigroviridis to HTLV-1 subtype B strains. Virology 287: 275–285.
[6]  VandeWoude S, Apetrei C (2006) Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 19: 728–762.
[7]  Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M, et al. (2003) Hybrid origin of SIV in chimpanzees. Science 300: 1713.
[8]  Goldberg TL, Sintasath DM, Chapman CA, Cameron KM, Karesh WB, et al. (2009) Coinfection of Ugandan red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) with novel, divergent delta-, lenti-, and spumaretroviruses. J Virol 83: 11318–11329.
[9]  Grobler J, Gray CM, Rademeyer C, Seoighe C, Ramjee G, et al. (2004) Incidence of HIV-1 dual infection and its association with increased viral load set point in a cohort of HIV-1 subtype C-infected female sex workers. J Infect Dis 190: 1355–1359.
[10]  Pacold M, Smith D, Little S, Cheng PM, Jordan P, et al. (2010) Comparison of methods to detect HIV dual infection. AIDS Res Hum Retroviruses 26: 1291–1298.
[11]  Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, et al. (2008) Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J Virol 82: 3952–3970.
[12]  Palmer S, Kearney M, Maldarelli F, Halvas EK, Bixby CJ, et al. (2005) Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol 43: 406–413.
[13]  Ryland EG, Tang Y, Christie CD, Feeney ME (2010) Sequence evolution of HIV-1 following mother-to-child transmission. J Virol 84: 12437–12444.
[14]  Li H, Bar KJ, Wang S, Decker JM, Chen Y, et al. (2010) High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men. PLoS Pathog 6: e1000890.
[15]  Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, et al. (2006) Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313: 523–526.
[16]  Ling B, Santiago ML, Meleth S, Gormus B, McClure HM, et al. (2003) Noninvasive detection of new simian immunodeficiency virus lineages in captive sooty mangabeys: ability to amplify virion RNA from fecal samples correlates with viral load in plasma. J Virol 77: 2214–2226.
[17]  Leendertz FH, Pauli G, Maetz-Rensing K, Boardman W, Nunn C, et al. (2006) Pathogens as drivers of population declines: The importance of systematic monitoring in great apes and other threatened mammals. Biological Conservation 131: 325–337.
[18]  Kondgen S, Schenk S, Pauli G, Boesch C, Leendertz FH (2010) Noninvasive monitoring of respiratory viruses in wild chimpanzees. Ecohealth 7: 332–341.
[19]  Morozov VA, Leendertz FH, Junglen S, Boesch C, Pauli G, et al. (2009) Frequent foamy virus infection in free-living chimpanzees of the Tai National Park (Cote d’Ivoire). J Gen Virol 90: 500–506.
[20]  Schweizer M, Neumann-Haefelin D (1995) Phylogenetic analysis of primate foamy viruses by comparison of pol sequences. Virology 207: 577–582.
[21]  Mullers E, Uhlig T, Stirnnagel K, Fiebig U, Zentgraf H, et al. (2011) Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis. J Virol 85: 1452–1463.
[22]  Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224.
[23]  Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462–2463.
[24]  Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.
[25]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
[26]  Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55: 539–552.
[27]  Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 1253–1256.
[28]  Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33: W557–559.
[29]  Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
[30]  Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. New-York: Springer-Verlag. 488 p.
[31]  Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16: 37–45.
[32]  Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657–1659.
[33]  Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633.
[34]  Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48.
[35]  Bjork A, Liu W, Wertheim JO, Hahn BH, Worobey M (2011) Evolutionary history of chimpanzees inferred from complete mitochondrial genomes. Mol Biol Evol 28: 615–623.
[36]  Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, et al. (2010) Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467: 420–425.
[37]  Nethe M, Berkhout B, van der Kuyl AC (2005) Retroviral superinfection resistance. Retrovirology 2: 52.
[38]  Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, et al. (2005) Ancient co-speciation of simian foamy viruses and primates. Nature 434: 376–380.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133