全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

DOI: http://dx.doi.org/10.2147/IJN.S16043

Keywords: silver nanoparticles, bionanocomposites, montmorillonite, chitosan, antibacterial activity, Mueller Hinton agar

Full-Text   Cite this paper   Add to My Lib

Abstract:

thesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity Original Research (9999) Total Article Views Authors: Kamyar Shameli, Mansor Bin Ahmad, Mohsen Zargar, et al Published Date January 2011 Volume 2011:6 Pages 271 - 284 DOI: http://dx.doi.org/10.2147/IJN.S16043 Kamyar Shameli1, Mansor Bin Ahmad1, Mohsen Zargar3, Wan Md Zin Wan Yunus1, Nor Azowa Ibrahim1, Parvaneh Shabanzadeh2, Mansour Ghaffari Moghaddam4 1Department of Chemistry, Faculty of Science, 2Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia; 3Department of Biology, Islamic Azad University, Qum, Iran; 4Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran Abstract: Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133