全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs

DOI: http://dx.doi.org/10.2147/IJN.S27428

Keywords: uncrystalline motif, self-assembling peptide, -sheet, nanofiber, mechanical strength, hydrophobic compound carrier

Full-Text   Cite this paper   Add to My Lib

Abstract:

self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs Original Research (2742) Total Article Views Authors: Sun L, Zhao X Published Date February 2012 Volume 2012:7 Pages 571 - 580 DOI: http://dx.doi.org/10.2147/IJN.S27428 Received: 18 October 2011 Accepted: 24 November 2011 Published: 02 February 2012 Lijuan Sun1,2, Xiaojun Zhao1,3 1West China Hospital Laboratory of Nanomedicine and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu 610041, Sichuan, China; 2Dept of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China; 3Center for Biomedical Engineering NE47-378, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Abstract: Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-GGAGGS-c) and R4 (n-RADARADARADARADA-GPGGY-c), and then observed the effect of these motifs on biophysical properties of the peptide. Atomic force microscopy, transmitting electron microscopy, and circular dichroism spectroscopy confirm that R3 and R4 display -sheet structure and self-assemble into long nanofibers. Compared with R3, the -sheet structure and nanofibers formed by R4 are more stable; they change to random coil and unordered aggregation at higher temperature. Rheology measurements indicate that novel peptides form hydrogel when induced by DMEM, and the storage modulus of R3 and R4 hydrogel is 0.5 times and 3 times higher than that of RADA16-I, respectively. Furthermore, R4 hydrogel remarkably promotes growth of liver cell L02 and liver cancer cell SMCC7721 compared with 2D culture, determined by MTT assay. Novel peptides still have potential as hydrophobic drug carriers; they can stabilize pyrene microcrystals in aqueous solution and deliver this into a lipophilic environment, identified by fluorescence emission spectra. Altogether, the spider fibroin motif GPGGY most effectively enhances mechanical strength and hydrophobicity of the peptide. This study provides a new method in the design of nanobiomaterials and helps us to understand the role of the amino acid sequence in nanofiber formation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133