|
Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticlesDOI: http://dx.doi.org/10.2147/IJN.S32311 Keywords: magnetic nanoparticle, non-viral vector, gene delivery, tryptophan hydroxylase-2, LAN-5, neuronal cells Abstract: cceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticles Original Research (3056) Total Article Views Authors: Tencomnao T, Klangthong K, Pimpha N, Chaleawlert-umpon S, Saesoo S, Woramongkolchai N, Saengkrit N Published Date June 2012 Volume 2012:7 Pages 2783 - 2792 DOI: http://dx.doi.org/10.2147/IJN.S32311 Received: 27 March 2012 Accepted: 03 May 2012 Published: 03 June 2012 Tewin Tencomnao,1,* Kewalin Klangthong,2,* Nuttaporn Pimpha,3 Saowaluk Chaleawlert-umpon,3 Somsak Saesoo,3 Noppawan Woramongkolchai,3 Nattika Saengkrit,3 1Center for Excellence in Omics-Nano Medical Technology Development Project, 2Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 3National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand *Both authors contributed equally to this work Background: The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate) (PMMA) core/polyethyleneimine (PEI) shell (mag-PEI) nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2) gene was also investigated in cultured neuronal LAN-5 cells. Methods: The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the surfaces of the mag-PEI nanoparticles via electrostatic interaction. Finally, the mag-PEI nanoparticle magnetoplex was delivered into LAN-5 cells. Reverse-transcriptase polymerase chain reaction was performed to evaluate TPH-2 expression in a quantitative manner. Results: The study demonstrated the role of newly synthesized high-magnetization mag-PEI nanoparticles for gene transfection in vitro. The expression signals of a model gene, luciferase, and a therapeutic gene, TPH-2, were enhanced under magnetic-assisted transfection. An in
|