Tocopherols are a class of four natural compounds that can provide nutrition and function as antioxidant in both plants and animals. Maize kernels have low α-tocopherol content, the compound with the highest vitamin E activity, thus, raising the risk of vitamin E deficiency in human populations relying on maize as their primary vitamin E source. In this study, two insertion/deletions (InDels) within a gene encoding γ-tocopherol methyltransferase, Zea mays VTE4 (ZmVTE4), and a single nucleotide polymorphism (SNP) located ~85 kb upstream of ZmVTE4 were identified to be significantly associated with α-tocopherol levels in maize kernels by conducting an association study with a panel of ~500 diverse inbred lines. Linkage analysis in three populations that segregated at either one of these three polymorphisms but not at the other two suggested that the three polymorphisms could affect α-tocopherol content independently. Furthermore, we found that haplotypes of the two InDels could explain ~33% of α-tocopherol variation in the association panel, suggesting ZmVTE4 is a major gene involved in natural phenotypic variation of α-tocopherol. One of the two InDels is located within the promoter region and associates with ZmVTE4 transcript level. This information can not only help in understanding the underlying mechanism of natural tocopherol variations in maize kernels, but also provide valuable markers for marker-assisted breeding of α-tocopherol content in maize kernels, which will then facilitate the improvement of maize as a better source of daily vitamin E nutrition.
References
[1]
DellaPenna D (2005) A decade of progress in understanding vitamin E synthesis in plants. J Plant Physiol 162: 729–737.
[2]
Traber MG (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16: 321–347.
[3]
Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, et al. (1990) Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr 52: 557–563.
[4]
Meydani SN, Meydani M, Blumberg JB, Leka LS, Siber G, et al. (1997) Vitamin E supplementation and in vivo immune response in healthy elderly subjects. JAMA 277: 1380–1386.
[5]
Lee CYJ, Wan F (2000) Vitamin E supplementation improves cell-mediated immunity and oxidative stress of Asian men and women. J Nutr 130: 2932–2937.
[6]
Oldewage-Theron WH, Samuel FO, Djoulde RD (2010) Serum concentration and dietary intake of vitamins A and E in low-income South African elderly. Clin Nutr 29: 119–123.
[7]
Mai TT, Hung NK, Kawakami M, Kawase M, Chuyen N (2003) Micronutrient status of primary school girls in rural and urban areas of South Vietnam. Asia Pac J Clin Nutr 12: 178–185.
[8]
Monteiro JP, Freimanis-Hance L, Faria LB, Mussi-Pinhata MM, Korelitz J, et al (2009) Both HIV–infected and HIV–exposed uninfected children living in Brazil, Argentina, and Mexico have similar rates of low concentrations of retinol, β-carotene, and vitamin E. Nutr Res 29: 716–722.
[9]
Ford ES, Sowell A (1999) Serum α-tocopherol status in the United States population: findings from the third national health and nutrition examination survey. Am J Epidemiol 150: 290–300.
[10]
Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg JM, et al. (2002) The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr 76: 703–716.
[11]
Gobert M, Gruffat D, Habeanu M, Parafita E, Bauchart D, et al. (2010) Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat Sci 85: 676–683.
[12]
Mène-Saffranéa L, Jonesa AD, DellaPenna D (2010) Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Nat Acad Sci U S A 107: 17815–17820.
[13]
Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell 16: 1419–1432.
[14]
Provencher LM, Miao L, Sinha N, Lucas WJ (2001) Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13: 1127–1141.
[15]
Maeda H, Sage TL, Isaac G, Welti R, DellaPenna D (2008) Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20: 452–470.
[16]
DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57: 711–738.
[17]
Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, et al. (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21: 1082–1087.
[18]
Gilliland LU, Magallanes-Lundback M, Hemming C, Supplee A, Koornneef M, et al. (2006) Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc Nat Acid Sci U S A 103: 18834–18841.
[19]
Rocheford TR, Wong JC, Egesel CO, Lambert RJ (2002) Enhancement of vitamin E levels in corn. J Am Coll Nutr 21: 191S–198S.
[20]
Wong JC, Lambert RJ, Tadmor Y, Rocheford TR (2003) QTL associated with accumulation of tocopherols in maize. Crop Sci 43: 2257–2266.
[21]
Chander S, Guo YQ, Yang XH, Yan JB, Zhang YR, et al. (2008) Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breeding 22: 353–365.
[22]
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.
[23]
Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, et al. (2009) A first-generation haplotype map of maize. Science 326: 1115–1117.
[24]
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, et al. (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6: e28334.
[25]
Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, et al. (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding 28: 511–526.
[26]
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38: 203–208.
[27]
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, et al. (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42: 355–360.
[28]
Goffman FD, B?hme T (2001) Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). J Agric Food Chem 49: 4990–4994.
[29]
Zhou Y, Fu ZY, Li Q, Xu ST, Chander S, et al. (2009) Comparative analysis of carotenoid and tocopherol compositions in high-oil and normal maize (Zea mays L.) inbreds. Acta Agron Sin 35: 2073–2084.
[30]
Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282: 2098–2100.
[31]
Yang X, Yan J, Shah T, Warburton ML, Li Q, et al. (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121: 417–431.
[32]
Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, et al. (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21: 2194–2202.
[33]
Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17: 2791–2804.
[34]
Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genet 38: 594–597.
[35]
Salvi S, Sponza G, Morgante M, Tomes D, Niu X, et al. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104: 11376–11381.
[36]
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, et al. (2009) The genetic architecture of maize flowering time. Science 325: 714–718.
[37]
Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, et al. (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319: 330–333.
[38]
Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, et al. (2010) Rare genetic variation at Zea mays crtRB1 increase β–carotene in maize grain. Nature Genet 42: 322–327.
[39]
Yan J, Warburton ML, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51: 433–449.
[40]
Wilburn EE, Mahan DC, Hill DA, Shipp TE, Yang H (2008) An evaluation of natural (RRR-α-tocopheryl acetate) and synthetic (all-rac-α-tocopheryl acetate) vitamin E fortification in the diet or drinking water of weanling. J Anim Sci 86: 584–591.
[41]
Monsen ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 100: 637–640.
[42]
Yan JB, Yang XH, Hector S, Trushar S, Li JS, et al. (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breeding 25: 441–451.
[43]
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[44]
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
[45]
Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria Officinalis (rubiaceae). Am J Bot 82: 1420–1425.
[46]
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32: 1792–1797.
[47]
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
[48]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25: 402–408.
[49]
Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25: 192–194.
[50]
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635.