全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Bananas as an Energy Source during Exercise: A Metabolomics Approach

DOI: 10.1371/journal.pone.0037479

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N = 14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F2-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P = 0.258). F2-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P = 0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum) = 0.869, Q2(cum) = 0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways.

References

[1]  Nieman DC (2009) Immune function responses to ultramarathon race competition. Med Sportiva 13: 189–196.
[2]  Nieman DC (2008) Immunonutrition support for athletes. Nutr Rev 66: 310–320.
[3]  Nieman DC, Davis JM, Henson DA, Gross SJ, Dumke CL, et al. (2005) Skeletal muscle cytokine mRNA and plasma cytokine changes after 2.5-h cycling: influence of carbohydrate. Med Sci Sports Exerc 37: 1283–1290.
[4]  Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, et al. (2003) Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol 94: 1917–1925.
[5]  Nieman DC, Henson DA, Gojanovich G, Davis JM, Murphy EA, et al. (2006) Influence of carbohydrate on immune function following 2 h cycling. Res Sports Med 14: 225–237.
[6]  Nieman DC, Konrad M, Henson DA, Kennerly K, Shanely RA, et al. (2012) Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interferon Cytokine Res 32: 12–17.
[7]  Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88: 1243–1276.
[8]  U.S. Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory Web site [Internet]. Beltsville, MD: USDA National Nutrient Database for Standard Reference, Release 24. USDA website. Available: http://www.nal.usda.gov/fnic/foodcomp/. Accessed 2011 Dec 15.
[9]  Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31: 2281–2283.
[10]  U.S. Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory (2007) 9 p. Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods – 2007.
[11]  Mitchell JB, Braun WA, Pizza FX, Forrest M (2000) Pre-exercise carbohydrate and fluid ingestion: influence of glycemic response on 10-km treadmill running performance in the heat. J Sports Med Phys Fitness 40: 41–50.
[12]  Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81: 6656–6667.
[13]  Lee R, West D, Phillips SM, Britz-McKibbin P (2010) Differential metabolomics for quantitative assessment of oxidative stress with strenuous exercise and nutritional intervention: thiol-specific regulation of cellular metabolism with N-acetyl-L-cysteine pretreatment. Anal Chem 82: 2959–2968.
[14]  Lehmann R, Zhao X, Weigert C, Simon P, Fehrenbach E, et al. (2010) Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS One 5: e11519.
[15]  Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, et al. (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2: 33ra37.
[16]  Miccheli A, Marini F, Capuani G, Miccheli AT, Delfini M, et al. (2009) The influence of a sports drink on the postexercise metabolism of elite athletes as investigated by NMR-based metabolomics. J Am Coll Nutr 28: 553–564.
[17]  Nelson AR, Phillips SM, Stellingwerff T, Rezzi S, Bruce SJ, et al. (2012) A protein-leucine supplement increases BCAA and nitrogen turnover but not performance. Med Sci Sports Exerc 44: 57–68.
[18]  Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, et al. (2010) (1)H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J Proteome Res 9: 6405–6416.
[19]  Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37: 247–248.
[20]  Liu W, Morrow JD, Yin H (2009) Quantification of F2-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method. Free Radic Biol Med 47: 1101–1107.
[21]  Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239: 70–76.
[22]  Manach C, Hubert J, Llorach R, Scalbert A (2009) The complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res 53: 1303–1315.
[23]  Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30: 42–59.
[24]  Jones NL, Heigenhauser GJ, Kuksis A, Matsos CG, Sutton JR, et al. (1980) Fat metabolism in heavy exercise. Clin Sci (Lond) 59: 469–478.
[25]  Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in Cavendish banana. J Agric Food Chem 48: 844–848.
[26]  Dunne JW, Davidson L, Vandongen R, Beilin LJ, Rogers P (1983) The effect of ascorbic acid on plasma sulfate conjugated catecholamines after eating bananas. Life Sci 33: 1511–1517.
[27]  Kuchel O, Buu NT, Serri O (1982) Sulfoconjugation of catecholamines, nutrition, and hypertension. Hypertension 4(5 Pt 2): 11193–11198.
[28]  Miura Y, Watanabe T, Noshiro T, Shimizu K, Kusakari T, et al. (1995) Plasma free dopamine: physiological variability and pathophysiological significance. Hypertens Res 18: suppl 1S65–S72.
[29]  Van Loon GR (1983) Plasma dopamine: regulation and significance. Fed Proc 42: 3012–3018.
[30]  Vincent JL, Biston P, Devriendt J, Brasseur A, De Backer D (2009) Dopamine versus norepinephrine: is one better? Minerva Anestesiol 75: 333–337.
[31]  Bennett RN, Shiga TM, Hassimotto NM, Rosa EA, Lajolo FM, et al. (2010) Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminata Juss.) cultivars. J Agric Food Chem 58: 7991–8003.
[32]  Rietschier HL, Henagan TM, Earnest CP, Baker BL, Cortez CC, et al. (2011) Sun-dried raisins are a cost-effective alternative to sports jelly beans in prolonged cycling. J Strength Cond Res 25: 3150–3156.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133