全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

De-Novo Transcriptome Sequencing of a Normalized cDNA Pool from Influenza Infected Ferrets

DOI: 10.1371/journal.pone.0037104

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ferret is commonly used as a model for studies of infectious diseases. The genomic sequence of this animal model is not yet characterized, and only a limited number of fully annotated cDNAs are currently available in GenBank. The majority of genes involved in innate or adaptive immune response are still lacking, restricting molecular genetic analysis of host response in the ferret model. To enable de novo identification of transcriptionally active ferret genes in response to infection, we performed de-novo transcriptome sequencing of animals infected with H1N1 A/California/07/2009. We also included splenocytes induced with bacterial lipopolysaccharide to allow for identification of transcripts specifically induced by Gram-negative bacteria. We pooled and normalized the cDNA library in order to delimit the risk of sequencing only highly expressed genes. While normalization of the cDNA library removes the possibility of assessing expression changes between individual animals, it has been shown to increase identification of low abundant transcripts. In this study, we identified more than 19000 partial ferret transcripts, including more than 1000 gene orthologs known to be involved in the innate and the adaptive immune response.

References

[1]  Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, et al. (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444: 330–336.
[2]  Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.
[3]  Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452: 872–876.
[4]  Coppe A, Pujolar JM, Maes GE, Larsen PF, Hansen MM, et al. (2010) Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered European eel. BMC Genomics 11: 635.
[5]  Fraser BA, Weadick CJ, Janowitz I, Rodd FH, Hughes KA (2011) Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 12: 202.
[6]  Hoffman JI (2011) Gene discovery in the Antarctic fur seal (Arctocephalus gazella) skin transcriptome. Mol Ecol Resour 11: 703–710.
[7]  Polato NR, Vera JC, Baums IB (2011) Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome. PLoS One 6: e28634.
[8]  Bruder CE, Yao S, Larson F, Camp JV, Tapp R, et al. (2010) Transcriptome sequencing and development of an expression microarray platform for the domestic ferret. BMC Genomics 11: 251.
[9]  Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17: 69–73.
[10]  Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, et al. (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10: 219.
[11]  Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, et al. (2009) Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol 7: 1.
[12]  Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, et al. (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17: 1636–1647.
[13]  Chu YK, Ali GD, Jia F, Li Q, Kelvin D, et al. (2008) The SARS-CoV ferret model in an infection-challenge study. Virology 374: 151–163.
[14]  Larin NM (1955) Canine distemper virus in the ferret. J Comp Pathol 65: 325–333.
[15]  Lipatov AS, Kwon YK, Pantin-Jackwood MJ, Swayne DE (2009) Pathogenesis of H5N1 influenza virus infections in mice and ferret models differs according to respiratory tract or digestive system exposure. J Infect Dis 199: 717–725.
[16]  Kirkeby S, Martel CJ, Aasted B (2009) Infection with human H1N1 influenza virus affects the expression of sialic acids of metaplastic mucous cells in the ferret airways. Virus Res.
[17]  Maher JA, DeStefano J (2004) The ferret: an animal model to study influenza virus. Lab Anim (NY) 33: 50–53.
[18]  Matsuoka Y, Lamirande EW, Subbarao K (2009) The ferret model for influenza. Curr Protoc Microbiol Chapter 15: Unit 15G 12:
[19]  Reuman PD, Keely S, Schiff GM (1989) Assessment of signs of influenza illness in the ferret model. J Virol Methods 24: 27–34.
[20]  Yen HL, Lipatov AS, Ilyushina NA, Govorkova EA, Franks J, et al. (2007) Inefficient transmission of H5N1 influenza viruses in a ferret contact model. J Virol 81: 6890–6898.
[21]  Borrell V (2010) In vivo gene delivery to the postnatal ferret cerebral cortex by DNA electroporation. J Neurosci Methods 186: 186–195.
[22]  Borrell V, Callaway EM (2002) Reorganization of exuberant axonal arbors contributes to the development of laminar specificity in ferret visual cortex. J Neurosci 22: 6682–6695.
[23]  Torabinejad M, Corr R, Buhrley M, Wright K, Shabahang S (2011) An animal model to study regenerative endodontics. J Endod 37: 197–202.
[24]  Sun C, Li Y, Wu Q, Luo H, Sun Y, et al. (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11: 262.
[25]  Schwartz TS, Tae H, Yang Y, Mockaitis K, Van Hemert JL, et al. (2010) A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences. BMC Genomics 11: 694.
[26]  Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, et al. (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12: 389.
[27]  Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, et al. (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10: 347.
[28]  Vogel H, Wheat CW (2011) Accessing the transcriptome: how to normalize mRNA pools. Methods Mol Biol 772: 105–128.
[29]  Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, et al. (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2: 1240–1243.
[30]  Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, et al. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85: 1135–1148.
[31]  Kaplan D, Smith D, Meyerson H, Pecora N, Lewandowska K (2001) CD5 expression by B lymphocytes and its regulation upon Epstein-Barr virus transformation. Proc Natl Acad Sci U S A 98: 13850–13853.
[32]  McBrayer A, Camp JV, Tapp R, Yamshchikov V, Grimes S, et al. (2010) Course of seasonal influenza A/Brisbane/59/07 H1N1 infection in the ferret. Virol J 7: 149.
[33]  Rowe T, Leon AJ, Crevar CJ, Carter DM, Xu L, et al. (2010) Modeling host responses in ferrets during A/California/07/2009 influenza infection. Virology 401: 257–265.
[34]  Zheng Y, Zhao L, Gao J, Fei Z (2011) iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics 12: 453.
[35]  Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.
[36]  Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57.
[37]  Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133