Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ~3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders.
References
[1]
Scott HM, Mason JI, Sharpe RM (2009) Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 30: 883–925.
[2]
Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, et al. (2008) Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest 118: 1479–1490.
[3]
Drake AJ, van den Driesche S, Scott HM, Hutchison GR, Seckl JR, et al. (2009) Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology 150: 5055–5064.
[4]
Macleod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, et al. (2010) Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl 33: 279–287.
[5]
Welsh M, MacLeod DJ, Walker M, Smith LB, Sharpe RM (2010) Critical androgen-sensitive periods of rat penis and clitoris development. Int J Androl 33: e144–152.
[6]
Eisenberg ML, Hsieh MH, Walters RC, Krasnow R, Lipshultz LI (2011) The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS One 6: e18973.
[7]
Hsieh MH, Breyer BN, Eisenberg ML, Baskin LS (2008) Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption. Curr Urol Rep 9: 137–142.
[8]
Mendiola J, Stahlhut RW, Jorgensen N, Liu F, Swan SH (2011) Shorter anogenital distance predicts poorer semen quality in young men in Rochester, new york. Environ Health Perspect 119: 958–963.
[9]
Fisher JS, Macpherson S, Marchetti N, Sharpe RM (2003) Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod 18: 1383–1394.
[10]
Barlow NJ, Phillips SL, Wallace DG, Sar M, Gaido KW, et al. (2003) Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci 73: 431–441.
[11]
Lehmann KP, Phillips S, Sar M, Foster PM, Gaido KW (2004) Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicol Sci 81: 60–68.
[12]
Plummer S, Sharpe RM, Hallmark N, Mahood IK, Elcombe C (2007) Time-dependent and compartment-specific effects of in utero exposure to Di(n-butyl) phthalate on gene/protein expression in the fetal rat testis as revealed by transcription profiling and laser capture microdissection. Toxicol Sci 97: 520–532.
[13]
Shultz VD, Phillips S, Sar M, Foster PM, Gaido KW (2001) Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci 64: 233–242.
[14]
Thompson CJ, Ross SM, Gaido KW (2004) Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. Endocrinology 145: 1227–1237.
[15]
Thompson CJ, Ross SM, Hensley J, Liu K, Heinze SC, et al. (2005) Differential steroidogenic gene expression in the fetal adrenal gland versus the testis and rapid and dynamic response of the fetal testis to di(n-butyl) phthalate. Biol Reprod 73: 908–917.
Qin J, Tsai MJ, Tsai SY (2008) Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One 3: e3285.
[18]
Bakke M, Lund J (1995) Transcriptional regulation of the bovine CYP17 gene: two nuclear orphan receptors determine activity of cAMP-responsive sequence 2. Endocr Res 21: 509–516.
[19]
Bakke M, Lund J (1995) Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3′,5′-monophosphate-responsive sequence in the bovine CYP17 gene. Mol Endocrinol 9: 327–339.
[20]
Buholzer CF, Arrighi JF, Abraham S, Piguet V, Capponi AM, et al. (2005) Chicken ovalbumin upstream promoter-transcription factor is a negative regulator of steroidogenesis in bovine adrenal glomerulosa cells. Mol Endocrinol 19: 65–75.
[21]
Cooney AJ, Tsai SY, O'Malley BW, Tsai MJ (1992) Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 12: 4153–4163.
[22]
Shibata H, Ikeda Y, Morohashi K, Mukai T, Kurihara I, et al. (2000) Orphan receptors COUP-TF and DAX-1 as targets in disordered CYP17 expression in adrenocortical tumors. Endocr Res 26: 1039–1044.
[23]
Wehrenberg U, Ivell R, Jansen M, von Goedecke S, Walther N (1994) Two orphan receptors binding to a common site are involved in the regulation of the oxytocin gene in the bovine ovary. Proc Natl Acad Sci U S A 91: 1440–1444.
[24]
Weisser J, Landreh L, Soder O, Svechnikov K (2011) Steroidogenesis and steroidogenic gene expression in postnatal fetal rat Leydig cells. Mol Cell Endocrinol 341: 18–24.
[25]
Haavisto TE, Adamsson NA, Myllymaki SA, Toppari J, Paranko J (2003) Effects of 4-tert-octylphenol, 4-tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod Toxicol 17: 593–605.
[26]
Gaido KW, Hensley JB, Liu D, Wallace DG, Borghoff S, et al. (2007) Fetal mouse phthalate exposure shows that Gonocyte multinucleation is not associated with decreased testicular testosterone. Toxicol Sci 97: 491–503.
[27]
Lehraiki A, Racine C, Krust A, Habert R, Levacher C (2009) Phthalates impair germ cell number in the mouse fetal testis by an androgen- and estrogen-independent mechanism. Toxicol Sci 111: 372–382.
[28]
Haavisto T, Nurmela K, Pohjanvirta R, Huuskonen H, El-Gehani F, et al. (2001) Prenatal testosterone and luteinizing hormone levels in male rats exposed during pregnancy to 2,3,7,8-tetrachlorodibenzo-p-dioxin and diethylstilbestrol. Mol Cell Endocrinol 178: 169–179.
[29]
Zheng W, Horton CD, Kim J, Halvorson LM (2010) The orphan nuclear receptors COUP-TFI and COUP-TFII regulate expression of the gonadotropin LHbeta gene. Mol Cell Endocrinol 330: 59–71.
[30]
Zhang Y, Dufau ML (2000) Nuclear orphan receptors regulate transcription of the gene for the human luteinizing hormone receptor. J Biol Chem 275: 2763–2770.
[31]
Zhang Y, Dufau ML (2001) EAR2 and EAR3/COUP-TFI regulate transcription of the rat LH receptor. Mol Endocrinol 15: 1891–1905.
[32]
Zhang Y, Dufau ML (2003) Repression of the luteinizing hormone receptor gene promoter by cross talk among EAR3/COUP-TFI, Sp1/Sp3, and TFIIB. Mol Cell Biol 23: 6958–6972.
[33]
Attar E, Tokunaga H, Imir G, Yilmaz MB, Redwine D, et al. (2009) Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab 94: 623–631.
[34]
Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA, et al. (1992) Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci U S A 89: 1448–1452.
[35]
Sato Y, Suzuki T, Hidaka K, Sato H, Ito K, et al. (2003) Immunolocalization of nuclear transcription factors, DAX-1 and COUP-TF II, in the normal human ovary: correlation with adrenal 4 binding protein/steroidogenic factor-1 immunolocalization during the menstrual cycle. J Clin Endocrinol Metab 88: 3415–3420.
[36]
Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, et al. (1992) COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 12: 4666–4676.
Zeitoun K, Takayama K, Michael MD, Bulun SE (1999) Stimulation of aromatase P450 promoter (II) activity in endometriosis and its inhibition in endometrium are regulated by competitive binding of steroidogenic factor-1 and chicken ovalbumin upstream promoter transcription factor to the same cis-acting element. Mol Endocrinol 13: 239–253.
[39]
Lambrot R, Muczynski V, Lecureuil C, Angenard G, Coffigny H, et al. (2009) Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect 117: 32–37.
[40]
Chauvigne F, Menuet A, Lesne L, Chagnon MC, Chevrier C, et al. (2009) Time- and dose-related effects of di-(2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro. Environ Health Perspect 117: 515–521.
[41]
Majdic G, Millar MR, Saunders PT (1995) Immunolocalisation of androgen receptor to interstitial cells in fetal rat testes and to mesenchymal and epithelial cells of associated ducts. J Endocrinol 147: 285–293.
[42]
Mitchell RT, Childs AJ, Anderson RA, van den Driesche S, Saunders PTK, et al. (2012) Do phthalates affect steroidogenesis by the human fetal testis? Exposure of human fetal testis xenografts to di-n-butyl phthalate. J Clin Endocrinol Metab 97: E341–E348.
[43]
Mahood IK, Scott HM, Brown R, Hallmark N, Walker M, et al. (2007) In utero exposure to di(n-butyl) phthalate and testicular dysgenesis: comparison of fetal and adult end points and their dose sensitivity. Environ Health Perspect 115: Suppl 155–61.
[44]
Welsh M, Sharpe RM, Walker M, Smith LB, Saunders PT (2009) New insights into the role of androgens in wolffian duct stabilization in male and female rodents. Endocrinology 150: 2472–2480.
[45]
Coutts SM, Childs AJ, Fulton N, Collins C, Bayne RA, et al. (2008) Activin signals via SMAD2/3 between germ and somatic cells in the human fetal ovary and regulates kit ligand expression. Dev Biol 314: 189–199.
[46]
Mahood IK, Hallmark N, McKinnell C, Walker M, Fisher JS, et al. (2005) Abnormal Leydig Cell aggregation in the fetal testis of rats exposed to di (n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology 146: 613–623.
[47]
Sharpe RM, Rivas A, Walker M, McKinnell C, Fisher JS (2003) Effect of neonatal treatment of rats with potent or weak (environmental) oestrogens, or with a GnRH antagonist, on Leydig cell development and function through puberty into adulthood. Int J Androl 26: 26–36.
[48]
Mahood IK, McKinnell C, Walker M, Hallmark N, Scott H, et al. (2006) Cellular origins of testicular dysgenesis in rats exposed in utero to di(n-butyl) phthalate. Int J Androl 29: 148–154; discussion 181–145: