Lactobacillus-dominated vaginal microbiotas are associated with reproductive health and STI resistance in women, whereas altered microbiotas are associated with bacterial vaginosis (BV), STI risk and poor reproductive outcomes. Putative vaginal taxa have been observed in male first-catch urine, urethral swab and coronal sulcus (CS) specimens but the significance of these observations is unclear. We used 16 S rRNA sequencing to characterize the microbiota of the CS and urine collected from 18 adolescent men over three consecutive months. CS microbiotas of most participants were more stable than their urine microbiotas and the composition of CS microbiotas were strongly influenced by circumcision. BV-associated taxa, including Atopobium, Megasphaera, Mobiluncus, Prevotella and Gemella, were detected in CS specimens from sexually experienced and inexperienced participants. In contrast, urine primarily contained taxa that were not abundant in CS specimens. Lactobacilllus and Streptococcus were major urine taxa but their abundance was inversely correlated. In contrast, Sneathia, Mycoplasma and Ureaplasma were only found in urine from sexually active participants. Thus, the CS and urine support stable and distinct bacterial communities. Finally, our results suggest that the penis and the urethra can be colonized by a variety of BV-associated taxa and that some of these colonizations result from partnered sexual activity.
References
[1]
Frank DN, Zhu W, Sartor RB, Li E (2011) Investigating the biological and clinical significance of human dysbioses. Trends Microbiol.
[2]
Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, et al. (2008) Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 197: 435–438.
[3]
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104: 13780–13785.
[4]
Eckburg PB, Relman DA (2007) The role of microbes in Crohn’s disease. Clin Infect Dis 44: 256–262.
[5]
Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, et al. (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6: e1000711.
[6]
Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trends Microbiol 16: 107–114.
[7]
Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28: 405–440.
[8]
Witkin SS, Linhares IM, Giraldo P, Ledger WJ (2007) An altered immunity hypothesis for the development of symptomatic bacterial vaginosis. Clin Infect Dis 44: 554–557.
[9]
Donders GG, Vereecken A, Bosmans E, Spitz B (2003) Vaginal cytokines in normal pregnancy. Am J Obstet Gynecol 189: 1433–1438.
[10]
Mirmonsef P, Gilbert D, Zariffard MR, Hamaker BR, Kaur A, et al. (2011) The effects of commensal bacteria on innate immune responses in the female genital tract. Am J Reprod Immunol 65: 190–195.
[11]
Spurbeck RR, Arvidson CG (2008) Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species. Infect Immun 76: 3124–3130.
[12]
Atassi F, Servin AL (2010) Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiol Lett 304: 29–38.
[13]
Boris S, Barbes C (2000) Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2: 543–546.
[14]
Eschenbach DA, Davick PR, Williams BL, Klebanoff SJ, Young-Smith K, et al. (1989) Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol 27: 251–256.
[15]
Schwebke JR (2005) Abnormal vaginal flora as a biological risk factor for acquisition of HIV infection and sexually transmitted diseases. J Infect Dis 192: 1315–1317.
[16]
Schwebke JR, Desmond R (2007) A randomized trial of metronidazole in asymptomatic bacterial vaginosis to prevent the acquisition of sexually transmitted diseases. Am J Obstet Gynecol 196: 517 e511–516:
Nelson DE, Van Der Pol B, Dong Q, Revanna KV, Fan B, et al. (2010) Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS One 5: e14116.
[19]
Dong Q, Nelson DE, Toh E, Diao L, Gao X, et al. (2011) The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One 6: e19709.
[20]
Price LB, Liu CM, Johnson KE, Aziz M, Lau MK, et al. (2010) The effects of circumcision on the penis microbiome. PLoS One 5: e8422.
[21]
Bowie WR, Pollock HM, Forsyth PS, Floyd JF, Alexander ER, et al. (1977) Bacteriology of the urethra in normal men and men with nongonococcal urethritis. J Clin Microbiol 6: 482–488.
[22]
Group. JCHMPDGW (2012) Evaluation of 16 S rDNA-based community profiling for human microbiome research.
[23]
Rajendhran J, Gunasekaran P (2010) Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res.
[24]
Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73: 1576–1585.
[25]
Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104: 2927–2932.
[26]
Grice EA, Kong HH, Conlan S, Deming CB, Davis J, et al. (2009) Topographical and temporal diversity of the human skin microbiome. Science 324: 1190–1192.
[27]
Taylor-Robinson D, Jensen JS (2011) Mycoplasma genitalium: from Chrysalis to Multicolored Butterfly. Clin Microbiol Rev 24: 498–514.
[28]
Harwich MD Jr, Alves JM, Buck GA, Strauss JF, 3rd , Patterson JL, et al. (2010) Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies. BMC Genomics 11: 375.
[29]
Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353: 1899–1911.
[30]
Lee JW, Shim YH, Lee SJ (2009) Lactobacillus colonization status in infants with urinary tract infection. Pediatr Nephrol 24: 135–139.
[31]
Lennon NJ, Lintner RE, Anderson S, Alvarez P, Barry A, et al. (2010) A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. Genome Biol 11: R15.
[32]
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, et al. (2010) Microbes and Health Sackler Colloquium: Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A.
[33]
Cameron DW, Simonsen JN, D’Costa LJ, Ronald AR, Maitha GM, et al. (1989) Female to male transmission of human immunodeficiency virus type 1: risk factors for seroconversion in men. Lancet 2: 403–407.
[34]
Weiss HA, Thomas SL, Munabi SK, Hayes RJ (2006) Male circumcision and risk of syphilis, chancroid, and genital herpes: a systematic review and meta-analysis. Sex Transm Infect 82: 101–109; discussion 110:
[35]
Mehta SD, Moses S, Agot K, Parker C, Ndinya-Achola JO, et al. (2009) Adult male circumcision does not reduce the risk of incident Neisseria gonorrhoeae, Chlamydia trachomatis, or Trichomonas vaginalis infection: results from a randomized, controlled trial in Kenya. J Infect Dis 200: 370–378.
[36]
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[37]
Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319.
[38]
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072.
[39]
Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, et al. (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35: D169–172.
[40]
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.
[41]
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500.
[42]
Felsenstein J (1989) PHYLIP- Phylogeny ingerence package. Cladistics. pp. 164–166.