全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Campylobacter jejuni Survives within Epithelial Cells by Avoiding Delivery to Lysosomes

DOI: 10.1371/journal.ppat.0040014

Full-Text   Cite this paper   Add to My Lib

Abstract:

Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni–containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells.

References

[1]  Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, et al. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607–625.
[2]  Allos BM (1997) Association between Campylobacter infection and Guillain-Barre syndrome. J Infect Dis 176(Suppl 2): S125–S128.
[3]  van Spreeuwel JP, Duursma GC, Meijer CJ, Bax R, Rosekrans PC, et al. (1985) Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26: 945–951.
[4]  Russell RG, O'Donnoghue M, Blake DC Jr, Zulty J, DeTolla LJ (1993) Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatta. J Infect Dis 168: 210–215.
[5]  Babakhani FK, Joens LA (1993) Primary swine intestinal cells as a model for studying Campylobacter jejuni invasiveness. Infect Immun 61: 2723–2726.
[6]  Newell DG, Pearson A (1984) The invasion of epithelial cell lines and the intestinal epithelium of infant mice by Campylobacter jejuni/coli. J Diarrhoeal Dis Res 2: 19–26.
[7]  Yao R, Burr DH, Guerry P (1997) CheY-mediated modulation of Campylobacter jejuni virulence. Mol Microbiol 23: 1021–1031.
[8]  De Melo MA, Gabbiani G, Pechere JC (1989) Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect Immun 57: 2214–2222.
[9]  Konkel ME, Joens LA (1989) Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun 57: 2984–2990.
[10]  Oelschlaeger TA, Guerry P, Kopecko DJ (1993) Unusual microtubule-dependent endocytosis mechanisms triggered by and . Proc Natl Acad Sc USA 90: 6884–6888.
[11]  Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70: 2242–2244.
[12]  Grant CC, Konkel ME, Cieplak W Jr, Tompkins LS (1993) Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 61: 1764–1771.
[13]  Yao R, Burr DH, Doig P, Trust TJ, Niu H, et al. (1994) Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14: 883–893.
[14]  Bacon DJ, Szymanski CM, Burr DH, Silver RP, Alm RA, et al. (2001) A phase-variable capsule is involved in virulence of Campylobacter jejuni 81–176. Mol Microbiol 40: 769–777.
[15]  Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52: 471–484.
[16]  Kakuda T, DiRita VJ (2006) Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect Immun 74: 4715–4723.
[17]  Morooka T, Umeda A, Amako K (1985) Motility as an intestinal colonization factor for Campylobacter jejuni. J Gen Microbiol 131: 1973–1980.
[18]  Karlyshev A, Everest P, Linton D, Cawthraw S, Newell D, et al. (2004) The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150: 1957–1964.
[19]  Watson RO, Novik V, Hofreuter D, Lara-Tejero M, Galan JE (2007) A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect Immun 75: 1994–2003.
[20]  Hickey TE, McVeigh AL, Scott DA, Michielutti RE, Bixby A, et al. (2000) Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 68: 6535–6541.
[21]  Watson RO, Galan JE (2005) Signal transduction in Campylobacter jejuni-induced cytokine production. Cell Microbiol 7: 655–665.
[22]  Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304: 242–248.
[23]  Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27: 347–382.
[24]  Goebel W, Kuhn M (2000) Bacterial replication in the host cell cytosol. Curr Opin Microbiol 3: 49–53.
[25]  Ogawa M, Sasakawa C (2006) Intracellular survival of Shigella. Cell Microbiol 8: 177–184.
[26]  Alexander J, Satoskar AR, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112(Pt 18): 2993–3002.
[27]  Knodler LA, Steele-Mortimer O (2003) Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4: 587–599.
[28]  Deretic V, Singh S, Master S, Harris J, Roberts E, et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8: 719–727.
[29]  Kiehlbauch JA, Albach RA, Baum LL, Chang KP (1985) Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect Immun 48: 446–451.
[30]  Humphrey CD, Montag DM, Pittman FE (1986) Morphologic observations of experimental Campylobacter jejuni infection in the hamster intestinal tract. Am J Pathol 122: 152–159.
[31]  Russell R, Blake DJ (1994) Cell association and invasion of Caco-2 cells by Campylobacter jejuni. Infect Immun 62: 3773–3779.
[32]  Jones DM, Sutcliffe EM, Curry A (1991) Recovery of viable but non-culturable Campylobacter jejuni. J Gen Microbiol 137: 2477–2482.
[33]  Beumer RR, de Vries J, Rombouts FM (1992) Campylobacter jejuni non-culturable coccoid cells. Int J Food Microbiol 15: 153–163.
[34]  Bovill RA, Mackey BM (1997) Resuscitation of 'non-culturable' cells from aged cultures of Campylobacter jejuni. Microbiology 143(Pt 5): 1575–1581.
[35]  Day WA Jr, Sajecki JL, Pitts TM, Joens LA (2000) Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun 68: 6337–6345.
[36]  Wassenaar TM, Engelskirchen M, Park S, Lastovica A (1997) Differential uptake and killing potential of Campylobacter jejuni by human peripheral monocytes/macrophages. Med Microbiol Immunol 186: 139–144.
[37]  Myszewski MA, Stern NJ (1991) Phagocytosis and intracellular killing of Campylobacter jejuni by elicited chicken peritoneal macrophages. Avian Dis 35: 750–755.
[38]  Banfi E, Cinco M, Zabucchi G (1986) Phagocytosis of Campylobacter jejuni and C. coli by peritoneal macrophages. J Gen Microbiol 132: 2409–2412.
[39]  Galán JE, Ginocchio C, Costeas P (1992) Molecular and functional characterization of the invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol 174: 4338–4349.
[40]  Isberg RR, Falkow S (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by . Nature 317: 262–264.
[41]  Rabinowitz S, Horstmann H, Gordon S, Griffiths G (1992) Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J Cell Biol 116: 95–112.
[42]  Ukkonen P, Lewis V, Marsh M, Helenius A, Mellman I (1986) Transport of macrophage Fc receptors and Fc receptor-bound ligands to lysosomes. J Exp Med 163: 952–971.
[43]  Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6: 1070–1077.
[44]  Wooldridge KG, Williams PH, Ketley JM (1996) Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 21: 299–305.
[45]  Hu L, McDaniel JP, Kopecko DJ (2006) Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81–176. Microb Pathog 40: 91–100.
[46]  Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, et al. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.
[47]  Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, et al. (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272: 13793–13802.
[48]  Kokubo H, Helms JB, Ohno-Iwashita Y, Shimada Y, Horikoshi Y, et al. (2003) Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains, rafts, in rat brain tissue. Brain Res 965: 83–90.
[49]  Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, et al. (1999) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 274: 12702–12709.
[50]  Duncan MJ, Shin JS, Abraham SN (2002) Microbial entry through caveolae: variations on a theme. Cell Microbiol 4: 783–791.
[51]  Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374: 186–190.
[52]  Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141: 101–114.
[53]  Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141: 85–99.
[54]  Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127: 915–934.
[55]  Biswas D, Niwa H, Itoh K (2004) Infection with Campylobacter jejuni induces tyrosine-phosphorylated proteins into INT-407 cells. Microbiol Immunol 48: 221–228.
[56]  Hu L, Kopecko DJ (1999) Campylobacter jejuni 81–176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun 67: 4171–4182.
[57]  Blocker A, Severin FF, Burkhardt JK, Bingham JB, Yu H, et al. (1997) Molecular requirements for bi-directional movement of phagosomes along microtubules. J Cell Biol 137: 113–129.
[58]  Henry T, Gorvel JP, Meresse S (2006) Molecular motors hijacking by intracellular pathogens. Cell Microbiol 8: 23–32.
[59]  Schroer TA, Steuer ER, Sheetz MP (1989) Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56: 937–946.
[60]  Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139: 469–484.
[61]  Everest PH, Goossens H, Butzler JP, Lloyd D, Knutton S, et al. (1992) Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. J Med Microbiol 37: 319–325.
[62]  Fauchere JL, Rosenau A, Veron M, Moyen EN, Richard S, et al. (1986) Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect Immun 54: 283–287.
[63]  Hofreuter D, Tsai J, Watson RO, Novik V, Altman B, et al. (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74: 4694–4707.
[64]  Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5: 247–254.
[65]  Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.
[66]  McPherson PS, Kay BK, Hussain NK (2001) Signaling on the endocytic pathway. Traffic 2: 375–384.
[67]  Garcia-del Portillo F, Finlay BB (1995) Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. Journal of Cell Biology 129: 81–97.
[68]  Meresse S, Steele-Mortimer O, Finlay BB, Gorvel JP (1999) The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. Embo J 18: 4394–4403.
[69]  Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA (1985) A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152: 592–596.
[70]  Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, et al. (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6: 271–279.
[71]  Isberg RR, Voorhis DL, Falkow S (1987) Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50: 769–778.
[72]  Sorensen M, Lippuner C, Kaiser T, Misslitz A, Aebischer T, et al. (2003) Rapidly maturing red fluorescent protein variants with strongly enhanced brightness in bacteria. FEBS Lett 552: 110–114.
[73]  Lara-Tejero M, Sutterwala FS, Ogura Y, Grant E, Bertin J, et al. (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203: 1407–1412.
[74]  Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131: 1435–1452.
[75]  Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, et al. (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70: 715–728.
[76]  Li G, Barbieri MA, Colombo MI, Stahl PD (1994) Structural features of the GTP-binding defective Rab5 mutants required for their inhibitory activity on endocytosis. J Biol Chem 269: 14631–14635.
[77]  Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149: 901–914.
[78]  Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, et al. (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3: 675–678.
[79]  Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473–483.
[80]  Miettinen HM, Rose JK, Mellman I (1989) Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 58: 317–327.
[81]  Cao H, Thompson HM, Krueger EW, McNiven MA (2000) Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J Cell Sci 113(Pt 11): 1993–2002.
[82]  Santamaria A, Castellanos E, Gomez V, Benedit P, Renau-Piqueras J, et al. (2005) PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol Cell Biol 25: 1900–1911.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133