全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Plasmodium falciparum Regulatory Subunit of cAMP-Dependent PKA and Anion Channel Conductance

DOI: 10.1371/journal.ppat.0040019

Full-Text   Cite this paper   Add to My Lib

Abstract:

Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part of the establishment of New Permeation Pathways (NPPs) in the red blood cell plasma membrane, and we have shown previously that one channel can be activated in uninfected cells by exogenous protein kinase A. Here, we present evidence that in P. falciparum-infected red blood cells, a cAMP pathway modulates anion conductance of the erythrocyte membrane. In patch-clamp experiments on infected erythrocytes, addition of recombinant PfPKA-R to the pipette in vitro, or overexpression of PfPKA-R in transgenic parasites lead to down-regulation of anion conductance. Moreover, this overexpressing PfPKA-R strain has a growth defect that can be restored by increasing the levels of intracellular cAMP. Our data demonstrate that the anion channel is indeed regulated by a cAMP-dependent pathway in P. falciparum-infected red blood cells. The discovery of a parasite regulatory pathway responsible for modulating anion channel activity in the membranes of P. falciparum-infected red blood cells represents an important insight into how parasites modify host cell permeation pathways. These findings may also provide an avenue for the development of new intervention strategies targeting this important anion channel and its regulation.

References

[1]  Ridley RG (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415: 686–693.
[2]  Clark IA, Schofield L (2000) Pathogenesis of malaria. Parasitol Today 16: 451–454.
[3]  Martin RE, Kirk K (2007) Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood 109: 2217–2224.
[4]  Staines HM, Ellory JC, Kirk K (2001) Perturbation of the pump-leak balance for Na(+) and K(+) in malaria- infected erythrocytes. Am J Physiol Cell Physiol 280: C1576–C1587.
[5]  Huber SM, Duranton C, Lang F (2005) Patch-clamp analysis of the “new permeability pathways” in malaria-infected erythrocytes. Int Rev Cytol 246: 59–134.
[6]  Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81: 495–537.
[7]  Desai SA, Bezrukov SM, Zimmerberg J (2000) A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406: 1001–1005.
[8]  Egee S, Lapaix F, Decherf G, Staines HM, Ellory JC, et al. (2002) A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J Physiol 542: 795–801.
[9]  Huber SM, Uhlemann AC, Gamper NL, Duranton C, Kremsner PG, et al. (2002) Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation. EMBO J 21: 22–30.
[10]  Ginsburg H, Stein WD (2005) How many functional transport pathways does Plasmodium falciparum induce in the membrane of its host erythrocyte?. Trends Parasitol 21: 118–121.
[11]  Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, et al. (2007) Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol 37: 475–482.
[12]  Staines HM, Ashmore S, Felgate H, Moore J, Powell T, et al. (2006) Solute transport via the new permeability pathways in Plasmodium falciparum-infected human red blood cells is not consistent with a simple single-channel model. Blood 108: 3187–3194.
[13]  Bouyer G, Egee S, Thomas SL (2007) Toward a unifying model of malaria-induced channel activity. Proc Natl Acad Sci U S A 104: 11044–11049.
[14]  Decherf G, Bouyer G, Egee S, Thomas SL (2007) Chloride channels in normal and cystic fibrosis human erythrocyte membrane. Blood Cells Mol Dis 39: 24–34.
[15]  Decherf G, Egee S, Staines HM, Ellory JC, Thomas SL (2004) Anionic channels in malaria-infected human red blood cells. Blood Cells Mol Dis 32: 366–371.
[16]  Verloo P, Kocken CH, Van der Wel A, Tilly BC, Hogema BM, et al. (2004) Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. J Biol Chem 279: 10316–10322.
[17]  Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS (2001) Dynamics of cAMP-dependent protein kinase. Chem Rev 101: 2243–2270.
[18]  Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243: 3763–3765.
[19]  Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, et al. (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 407–414.
[20]  Saito-Ito A, He S, Kimura M, Matsumura T, Tanabe K (1995) Cloning and structural analysis of the gene for cAMP-dependent protein kinase catalytic subunit from Plasmodium yoelii. Biochim Biophys Acta 1269: 1–5.
[21]  Li J, Cox LS (2000) Isolation and characterisation of a cAMP-dependent protein kinase catalytic subunit gene from Plasmodium falciparum. Mol Biochem Parasitol 109: 157–163.
[22]  Syin C, Parzy D, Traincard F, Boccaccio I, Joshi MB, et al. (2001) The H89 cAMP-dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Eur J Biochem 268: 4842–4849.
[23]  Feliciello A, Gottesman ME, Avvedimento EV (2005) cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal 17: 279–287.
[24]  Della Fazia MA, Servillo G, Sassone-Corsi P (1997) Cyclic AMP signalling and cellular proliferation: regulation of CREB and CREM. FEBS Lett 410: 22–24.
[25]  Beraldo FH, Almeida FM, da Silva AM, Garcia CR (2005) Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle. J Cell Biol 170: 551–557.
[26]  Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.
[27]  Read LK, Mikkelsen RB (1991) Comparison of adenylate cyclase and cAMP-dependent protein kinase in gametocytogenic and nongametocytogenic clones of Plasmodium falciparum. J Parasitol 77: 346–352.
[28]  Ward P, Equinet L, Packer J, Doerig C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5: 79.
[29]  Baker DA (2004) Adenylyl and guanylyl cyclases from the malaria parasite Plasmodium falciparum. IUBMB Life 56: 535–540.
[30]  Yuasa K, Mi-Ichi F, Kobayashi T, Yamanouchi M, Kotera J, et al. (2005) PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum. Biochem J 392: 221–229.
[31]  Canaves JM, Taylor SS (2002) Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family. J Mol Evol 54: 17–29.
[32]  Cheng X, Phelps C, Taylor SS (2001) Differential binding of cAMP-dependent protein kinase regulatory subunit isoforms Ialpha and IIbeta to the catalytic subunit. J Biol Chem 276: 4102–4108.
[33]  Cheng HC, van Patten SM, Smith AJ, Walsh DA (1985) An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase. Biochem J 231: 655–661.
[34]  Knighton DR, Zheng JH, Ten Eyck LF, Xuong NH, Taylor SS, et al. (1991) Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 414–420.
[35]  Lavazec C, Sanyal S, Templeton TJ (2006) Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res 34: 6696–6707.
[36]  Bouyer G, Egee S, Thomas SL (2006) Three types of spontaneously active anionic channels in malaria-infected human red blood cells. Blood Cells Mol Dis 36: 248–254.
[37]  Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, et al. (2004) Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16: 115–125.
[38]  Cuppoletti J, Tewari KP, Sherry AM, Ferrante CJ, Malinowska DH (2004) Sites of protein kinase A activation of the human ClC-2 Cl(-) channel. J Biol Chem 279: 21849–21856.
[39]  Jentsch TJ, Neagoe I, Scheel O (2005) CLC chloride channels and transporters. Curr Opin Neurobiol 15: 319–325.
[40]  Kawamoto F, Alejo-Blanco R, Fleck SL, Kawamoto Y, Sinden RE (1990) Possible roles of Ca2+ and cGMP as mediators of the exflagellation of Plasmodium berghei and Plasmodium falciparum. Mol Biochem Parasitol 42: 101–108.
[41]  Muhia DK, Swales CA, Deng W, Kelly JM, Baker DA (2001) The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Mol Microbiol 42: 553–560.
[42]  Beraldo FH, Mikoshiba K, Garcia CR (2007) Human malarial parasite, Plasmodium falciparum, displays capacitative calcium entry: 2-aminoethyl diphenylborinate blocks the signal transduction pathway of melatonin action on the P. falciparum cell cycle. J Pineal Res 43: 360–364.
[43]  Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, et al. (2000) Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat Cell Biol 2: 466–468.
[44]  Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, et al. (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306: 1934–1937.
[45]  Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306: 1930–1933.
[46]  Droucheau E, Primot A, Thomas V, Mattei D, Knockaert M, et al. (2004) Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors. Biochim Biophys Acta 1697: 181–196.
[47]  Templeton TJ, Deitsch KW (2005) Targeting malaria parasite proteins to the erythrocyte. Trends Parasitol 21: 399–402.
[48]  Desai SA, Rosenberg RL (1997) Pore size of the malaria parasite's nutrient channel. Proc Natl Acad Sci U S A 94: 2045–2049.
[49]  Nunes MC, Goldring JP, Doerig C, Scherf A (2007) A novel protein kinase family in Plasmodium falciparum is differentially transcribed and secreted to various cellular compartments of the host cell. Mol Microbiol 63: 391–403.
[50]  Schneider AG, Mercereau-Puijalon O (2005) A new Apicomplexa-specific protein kinase family: multiple members in Plasmodium falciparum, all with an export signature. BMC Genomics 6: 30.
[51]  Dreyfuss G, Schwartz KJ, Blout ER (1978) Compartmentalization of cyclic AMP-dependent protein kinases in human erythrocytes. Proc Natl Acad Sci U S A 75: 5926–5930.
[52]  Lim CJ, Han J, Yousefi N, Ma Y, Amieux PS, et al. (2007) Alpha4 integrins are type I cAMP-dependent protein kinase-anchoring proteins. Nat Cell Biol 9: 415–421.
[53]  Browe DM, Baumgarten CM (2006) EGFR kinase regulates volume-sensitive chloride current elicited by integrin stretch via PI-3K and NADPH oxidase in ventricular myocytes. J Gen Physiol 127: 237–251.
[54]  Wu Y, Sifri CD, Lei HH, Su XZ, Wellems TE (1995) Transfection of Plasmodium falciparum within human red blood cells. Proc Natl Acad Sci U S A 92: 973–977.
[55]  Deitsch K, Driskill C, Wellems T (2001) Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res 29: 850–853.
[56]  Frank M, Dzikowski R, Costantini D, Amulic B, Berdougo E, et al. (2006) Strict pairing of var promoters and introns is required for var gene silencing in the malaria parasite Plasmodium falciparum. J Biol Chem 281: 9942–9952.
[57]  Staines HM, Godfrey EM, Lapaix F, Egee S, Thomas S, et al. (2002) Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochim Biophys Acta 1561: 98–108.
[58]  Krugliak M, Ginsburg H (2006) The evolution of the new permeability pathways in Plasmodium falciparum-infected erythrocytes-a kinetic analysis. Exp Parasitol 114: 253–258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133