[1] | Kingsley RA, Baumler AJ (2002) Pathogenicity islands and host adaptation of Salmonella serovars. Curr Top Microbiol Immunol 264: 67–87.
|
[2] | Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, et al. (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 62: 308–319.
|
[3] | Kostakioti M, Newman CL, Thanassi DG, Stathopoulos C (2005) Mechanisms of protein export across the bacterial outer membrane. J Bacteriol 187: 4306–4314.
|
[4] | Henderson IR, Nataro JP, Kaper JB, Meyer TF, Farrand SK, et al. (2000) Renaming protein secretion in the gram-negative bacteria. Trends Microbiol 8: 352.
|
[5] | Henderson IR, Cappello R, Nataro JP (2000) Autotransporter proteins, evolution and redefining protein secretion. Trends Microbiol 8: 529–532.
|
[6] | Desvaux M, Parham NJ, Henderson IR (2004) The autotransporter secretion system. Res Microbiol 155: 53–60.
|
[7] | Rutherford N, Mourez M (2006) Surface display of proteins by gram-negative bacterial autotransporters. Microb Cell Fact 5: 22.
|
[8] | Jacob-Dubuisson F, Fernandez R, Coutte L (2004) Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 1694: 235–257.
|
[9] | Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40: 306–313.
|
[10] | Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, et al. (2007) Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317: 957–961.
|
[11] | Niemann HH, Schubert WD, Heinz DW (2004) Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect 6: 101–112.
|
[12] | Remaut H, Waksman G (2004) Structural biology of bacterial pathogenesis. Curr Opin Struct Biol 14: 161–170.
|
[13] | Newman CL, Stathopoulos C (2004) Autotransporter and two-partner secretion: delivery of large-size virulence factors by gram-negative bacterial pathogens. Crit Rev Microbiol 30: 275–286.
|
[14] | Touze T, Hayward RD, Eswaran J, Leong JM, Koronakis V (2004) Self-association of EPEC intimin mediated by the beta-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol 51: 73–87.
|
[15] | Sikora S, Strongin A, Godzik A (2005) Convergent evolution as a mechanism for pathogenic adaptation. Trends Microbiol 13: 522–527.
|
[16] | Bruggemann H, Cazalet C, Buchrieser C (2006) Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr Opin Microbiol 9: 86–94.
|
[17] | McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852–856.
|
[18] | Baumler AJ (1997) The record of horizontal gene transfer in Salmonella. Trends Microbiol 5: 318–322.
|
[19] | Cotter PA, DiRita VJ (2000) Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54: 519–565.
|
[20] | Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795.
|
[21] | Manting EH, Driessen AJ (2000) Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol 37: 226–238.
|
[22] | Huie JL, Silhavy TJ (1995) Suppression of signal sequence defects and azide resistance in Escherichia coli commonly result from the same mutations in secA. J Bacteriol 177: 3518–3526.
|
[23] | Senior AE (1990) The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem 19: 7–41.
|
[24] | Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, et al. (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21: 617–623.
|
[25] | Gromiha MM, Ahmad S, Suwa M (2004) Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins. J Comput Chem 25: 762–767.
|
[26] | Freudl R, Cole ST (1983) Cloning and molecular characterization of the ompA gene from Salmonella typhimurium. Eur J Biochem 134: 497–502.
|
[27] | Altendorf K, Stalz W, Greie J, Deckers-Hebestreit G (2000) Structure and function of the F(o) complex of the ATP synthase from Escherichia coli. J Exp Biol 203: 19–28.
|
[28] | Schnaitman CA (1973) Outer membrane proteins of Escherichia coli. I. Effect of preparative conditions on the migration of protein in polyacrylamide gels. Arch Biochem Biophys 157: 541–552.
|
[29] | Alkema WB, Lenhard B, Wasserman WW (2004) Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus. Genome Res 14: 1362–1373.
|
[30] | Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2: 188–194.
|
[31] | Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292: 2488–2492.
|
[32] | Beuzon CR, Holden DW (2001) Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3: 1345–1352.
|
[33] | Salcedo SP, Noursadeghi M, Cohen J, Holden DW (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3: 587–597.
|
[34] | Matsui H, Eguchi M, Kikuchi Y (2000) Use of confocal microscopy to detect Salmonella typhimurium within host cells associated with Spv-mediated intracellular proliferation. Microb Pathog 29: 53–59.
|
[35] | Richter-Dahlfors A, Buchan AM, Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186: 569–580.
|
[36] | Gruenheid S, Gros P (2000) Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Curr Opin Microbiol 3: 43–48.
|
[37] | Bjarnason J, Southward CM, Surette MG (2003) Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185: 4973–4982.
|
[38] | Kajava AV, Cheng N, Cleaver R, Kessel M, Simon MN, et al. (2001) Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins. Mol Microbiol 42: 279–292.
|
[39] | Hodak H, Clantin B, Willery E, Villeret V, Locht C, et al. (2006) Secretion signal of the filamentous haemagglutinin, a model two-partner secretion substrate. Mol Microbiol 61: 368–382.
|
[40] | Clantin B, Hodak H, Willery E, Locht C, Jacob-Dubuisson F, et al. (2004) The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway. Proc Natl Acad Sci U S A 101: 6194–6199.
|
[41] | Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH, et al. (2002) Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 1562: 6–31.
|
[42] | Dale C, Young SA, Haydon DT, Welburn SC (2001) The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci U S A 98: 1883–1888.
|
[43] | Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17: 53–86.
|
[44] | Foreman-Wykert AK, Miller JF (2003) Hypervirulence and pathogen fitness. Trends Microbiol 11: 105–108.
|
[45] | Mouslim C, Hilbert F, Huang H, Groisman EA (2002) Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol Microbiol 45: 1019–1027.
|
[46] | Parsons DA, Heffron F (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73: 4338–4345.
|
[47] | Ho TD, Slauch JM (2001) Characterization of grvA, an antivirulence gene on the gifsy-2 phage in Salmonella enterica serovar typhimurium. J Bacteriol 183: 611–620.
|
[48] | Burnet M (1940) Biological Aspects of Infectious Disease. Cambridge: Cambridge University press.
|
[49] | Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207: 149–157.
|
[50] | Pelicic V, Reyrat JM, Gicquel B (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20: 919–925.
|
[51] | Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170: 2575–2583.
|
[52] | Miller JH (1972) Experiments in molecular biology. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory.
|
[53] | Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, et al. (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182: 655–666.
|
[54] | Gal-Mor O, Valdez Y, Finlay BB (2006) The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice. Microbes Infect 8: 2154–2162.
|
[55] | Coombes BK, Wickham ME, Lowden MJ, Brown NF, Finlay BB (2005) Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proc Natl Acad Sci U S A 102: 17460–17465.
|
[56] | Kim W, Surette MG (2006) Coordinated regulation of two independent cell-cell signaling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol 188: 431–440.
|
[57] | Brown NF, Vallance BA, Coombes BK, Valdez Y, Coburn BA, et al. (2005) Salmonella Pathogenicity Island 2 Is Expressed Prior to Penetrating the Intestine. PLoS Pathog 1: e32.
|
[58] | Casadaban MJ, Chou J, Cohen SN (1980) In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143: 971–980.
|
[59] | Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195–199.
|