全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways

DOI: 10.1371/journal.ppat.1000237

Full-Text   Cite this paper   Add to My Lib

Abstract:

Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

References

[1]  Li B, Carey M, Workman JL (2007) The Role of Chromatin during Transcription. Cell 128: 707–719.
[2]  de la Serna IL, Ohkawa Y, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7: 461–473.
[3]  Kwon CS, Wagner D (2007) Unwinding chromatin for development and growth: a few genes at a time. Trends Genet 23: 403–412.
[4]  Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7: 437–447.
[5]  Guillemette B, Bataille AR, vry N, Adam M, Blanchette M, et al. (2005) Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning. PLoS Biol 3: e384. doi:10.1371/journal.pbio.0030384.
[6]  Tsukiyama T (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 3: 422–429.
[7]  Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, et al. (2007) Unique, Shared, and Redundant Roles for the Arabidopsis SWI/SNF Chromatin Remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19: 403–416.
[8]  Kwon CS, Chen C, Wagner D (2005) WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19: 992–1003.
[9]  Wagner D, Meyerowitz EM (2002) SPLAYED, a Novel SWI/SNF ATPase Homolog, Controls Reproductive Development in Arabidopsis. Curr Biol 12: 85–94.
[10]  March-Diaz R, Garcia-Dominguez M, Lozano-Juste J, Leon J, Florencio FJ, et al. (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53: 475–487.
[11]  Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 Is Involved in Jasmonic Acid and Ethylene Signaling of Pathogen Response in Arabidopsis. Plant Cell 17: 1196–1204.
[12]  Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, et al. (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105: 4945–4950.
[13]  Wu K, Zhang L, Zhou C, Yu C-W, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59: 225–234.
[14]  Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, et al. (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447: 735–738.
[15]  Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the Imitation Switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13: 686–697.
[16]  Geng F, Laurent BC (2004) Roles of SWI/SNF and HATs throughout the dynamic transcription of a yeast glucose-repressible gene. EMBO J 23: 127–137.
[17]  Damelin M, Simon I, Moy TI, Wilson B, Komili S, et al. (2002) The Genome-Wide Localization of Rsc9, a Component of the RSC Chromatin-Remodeling Complex, Changes in Response to Stress. Mol Cell 9: 563–573.
[18]  Proft M, Struhl K (2002) Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Mol Cell 9: 1307–1317.
[19]  Wilson B, Erdjument-Bromage H, Tempst P, Cairns BR (2006) The RSC Chromatin Remodeling Complex Bears an Essential Fungal-Specific Protein Module With Broad Functional Roles. Genetics 172: 795–809.
[20]  Zhang J, Ohta T, Maruyama A, Hosoya T, Nishikawa K, et al. (2006) BRG1 Interacts with Nrf2 To Selectively Mediate HO-1 Induction in Response to Oxidative Stress. Mol Cell Biol 26: 7942–7952.
[21]  Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, et al. (2007) Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element. PLoS Genet 3: e172. doi:10.1371/journal.pgen.0030172.
[22]  Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Bio 8: 532–540.
[23]  Durrant WE, Dong X (2004) SYSTEMIC ACQUIRED RESISTANCE. Annu Rev Phytopathol 42: 185–209.
[24]  Zarate SI, Kempema LA, Walling LL (2007) Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses. Plant Physiol 143: 866–875.
[25]  Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, et al. (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50: 128–139.
[26]  Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev phytopathol 43: 205–227.
[27]  Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux J-P, Broekaert WF (1998) Concomitant Activation of Jasmonate and Ethylene Response Pathways Is Required for Induction of a Plant Defensin Gene in Arabidopsis. Plant Cell 10: 2103–2114.
[28]  Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense. Plant Cell 15: 165–178.
[29]  Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703–3714.
[30]  Kazan K, Manners JM (2008) Jasmonate Signaling: Toward an Integrated View. Plant Physiol 146: 1459–1468.
[31]  McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, et al. (2005) Repressor- and Activator-Type Ethylene Response Factors Functioning in Jasmonate Signaling and Disease Resistance Identified via a Genome-Wide Screen of Arabidopsis Transcription Factor Gene Expression. Plant Physiol 139: 949–959.
[32]  Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18: 1577–1591.
[33]  Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, et al. (2004) Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. Plant Cell 16: 3460–3479.
[34]  Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. Plant Cell 16: 1938–1950.
[35]  Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, et al. (2007) MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. Plant Cell tpc.106.048017.
[36]  Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27: 675–684.
[37]  Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, et al. (2007) Whole-Genome Analysis of Histone H3 Lysine 27 Trimethylation in Arabidopsis. PLoS Biol 5: e129. doi:10.1371/journal.pbio.0050129.
[38]  Rowe HC, Kliebenstein DJ (2007) Elevated Genetic Variation Within Virulence-Associated Botrytis cinerea Polygalacturonase Loci. Mol Plant Microbe Interact 20: 1126–1137.
[39]  Denby KJ, Kumar P, Kliebenstein DJ (2004) Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 38: 473–486.
[40]  Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol 139: 5–17.
[41]  Engelberth J, Schmelz EA, Alborn HT, Cardoza YJ, Huang J, et al. (2003) Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem 312: 242–250.
[42]  Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44: 25–36.
[43]  Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, et al. (2001) Genetic Control of Natural Variation in Arabidopsis Glucosinolate Accumulation. Plant Physiol 126: 811–825.
[44]  Fiebig HJ, Arens M (1992) Glucosinolates (HPLC Method) - Survey By a Working Party of the Dgf, 128th Report - German Standard Methods For Investigation of Fats, Fatty Products, Tensides and Related Materials, 98th Report - Analysis of Fat Raw-Materials. Fett Wiss Technol 94: 199–203.
[45]  Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, et al. (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59: 663–671.
[46]  Chakrabarti SK, James JC, Mirmira RG (2002) Quantitative Assessment of Gene Targeting in Vitro and in Vivo by the Pancreatic Transcription Factor, Pdx1. IMPORTANCE OF CHROMATIN STRUCTURE IN DIRECTING PROMOTER BINDING. J Biol Chem 277: 13286–13293.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133