全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Key Role of Mfd in the Development of Fluoroquinolone Resistance in Campylobacter jejuni

DOI: 10.1371/journal.ppat.1000083

Full-Text   Cite this paper   Add to My Lib

Abstract:

Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.

References

[1]  Allos B (2001) Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clin Infect Dis 32: 1201–1206.
[2]  Tauxe RV (2002) Emerging foodborne pathogens. Int J Food Microbiol 78: 31–41.
[3]  Samuel M, Vugia D, Shallow S, Marcus R, Segler S, et al. (2004) Epidemiology of Sporadic Campylobacter Infection in the United States and Declining Trend in Incidence, FoodNet 1996–1999. Clin Infect Dis 38: S165–S174.
[4]  Nachamkin I, Allos BM, Ho T (1998) Campylobacter Species and Guillain-Barre Syndrome. Clin Microbiol Rev 11: 555–567.
[5]  Koga M, Gilbert M, Takahashi M, Li J, Koike S, et al. (2006) Comprehensive Analysis of Bacterial Risk Factors for the Development of Guillain-Barre Syndrome after Campylobacter jejuni Enteritis. J Infect Dis 193: 547–555.
[6]  Friedman CR, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blasr MJ, editors. Campylobacter 2nd ed. Washington, DC: ASM Press. pp. 121–138.
[7]  Takkinen J, Robstad O, Breuer T (2003) European Survey on Campylobacter surveillance and diagnosis 2001. Euro Surveill 8: 207–213.
[8]  Oldfield EC Iii, Wallace MR (2001) The role of antibiotics in the treatment of infectious diarrhea. Gastroenterology Clinics of North America 30: 817–835.
[9]  Gupta A, Nelson JM, Barrett TJ, Tauxe RV, Rossiter SP, et al. (2004) Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg Infect Dis 10: 1102–1109.
[10]  Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I (2001) Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis 7: 24–34.
[11]  White DG, Zhao S, Simjee S, Wagner DD, McDermott PF (2002) Antimicrobial resistance of foodborne pathogens. Microb Infect 4: 405–412.
[12]  Angulo FJ, Nargund VN, Chiller TC (2004) Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J Vet Med Series B 51: 374–379.
[13]  Kassenborg H, Smith K, Vugia D, Rabatsky-Ehr T, Bates M, et al. (2004) Fluoroquinolone-resistant Campylobacter infections: eating poultry outside of the home and foreign travel are risk factors. Clin Infect Dis 38: S279–S284.
[14]  Price LB, Lackey LG, Vailes R, Silbergeld E (2007) The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environ Health Perspect 115: 1035–1039.
[15]  Luangtongkum T, Morishita TY, Ison AJ, Huang S, McDermott PF, et al. (2006) Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Appl Environ Microbiol 72: 3600–3607.
[16]  Price LB, Johnson E, Vailes R, Silbergeld E (2005) Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environ Health Perspect 113: 557–560.
[17]  Hooper DC (2001) Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7: 337–341.
[18]  Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61: 377–392.
[19]  Luo N, Sahin O, Lin J, Michel LO, Zhang Q (2003) In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC Efflux Pump. Antimicrob Agents Chemother 47: 390–394.
[20]  Ge B, McDermott PF, White DG, Meng J (2005) Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 49: 3347–3354.
[21]  Bachoual R, Ouabdesselam S, Mory F, Lascols C, Soussy CJ, et al. (2001) Single or double mutational alterations of gyrA associated with fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Microb Drug Resist 7: 257–261.
[22]  Ruiz J, Goni P, Marco F, Gallardo F, Mirelis B, et al. (1998) Increased resistance to quinolones in Campylobacter jejuni: a genetic analysis of gyrA gene mutations in quinolone-resistant clinical isolates. Microbiol Immunol 42: 223–226.
[23]  Yan M, Sahin O, Lin J, Zhang Q (2006) Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. J Antimicrob Chemother 58: 1154–1159.
[24]  Lin J, Michel LO, Zhang Q (2002) CmeABC Functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46: 2124–2131.
[25]  Pumbwe L, Piddock LJV (2002) Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol Lett 206: 185–189.
[26]  Segreti J, Gootz TD, Goodman LJ, Parkhurst GW, Quinn JP, et al. (1992) High-level quinolone resistance in clinical isolates of Campylobacter jejuni. J Infect Dis 165: 667–670.
[27]  Zhang Q, Lin J, Pereira S (2003) Fluoroquinolone-resistant Campylobacter in animal reservoirs: dynamics of development, resistance mechanisms and ecological fitness. Anim Health Res Rev 4: 63–71.
[28]  Griggs DJ, Johnson MM, Frost JA, Humphrey T, Jorgensen F, et al. (2005) Incidence and mechanism of ciprofloxacin resistance in Campylobacter spp. isolated from commercial poultry flocks in the United Kingdom before, during, and after fluoroquinolone treatment. Antimicrob Agents Chemother 49: 699–707.
[29]  van Boven M, Veldman KT, de Jong MCM, Mevius DJ (2003) Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers. J Antimicrob Chemother 52: 719–723.
[30]  McDermott P, Bodeis S, English L, White D, Walker R, et al. (2002) Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J Infect Dis 185: 837–840.
[31]  Aarestrup FM, Wegener HC (1999) The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microb Infect 1: 639–644.
[32]  Piddock LJV (1995) Quinolone resistance and Campylobacter spp. J Antimicrob Chemother 36: 891–898.
[33]  Rautelin H, Renkonen OV, Kosunen TU (1991) Emergence of fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli in subjects from Finland. Antimicrob Agents Chemother 35: 2065–2069.
[34]  Ruiz J, Goni P, Marco F, Gallardo F, Mirelis B, Jimenez dA, Vila J (1998) Increased resistance to quinolones in Campylobacter jejuni: a genetic analysis of gyrA gene mutations in quinolone-resistant clinical isolates. Microbiol Immunol 42: 223–226.
[35]  Saenz Y, Zarazaga M, Lantero M, Gastanares MJ, Baquero F, et al. (2000) Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997–1998. Antimicrob Agents Chemother 44: 267–271.
[36]  Sanchez R, Fernandez-Baca V, Diaz MD, Munoz P, Rodriguez-Creixems M, et al. (1994) Evolution of susceptibilities of Campylobacter spp. to quinolones and macrolides. Antimicrob Agents Chemother 38: 1879–1882.
[37]  Smith KE, Bender JB, Osterholm MT (2000) Antimicrobial resistance in animals and relevance to human infections. In: Nachamkin I, Blasr MJ, editors. Campylobacter 2nd ed. Washington, DC: ASM Press. pp. 483–495.
[38]  Van Looveren M, Daube G, De Zutter L, Dumont J-M, Lammens C, et al. (2001) Antimicrobial susceptibilities of Campylobacter strains isolated from food animals in Belgium. J Antimicrob Chemother 48: 235–240.
[39]  Nachamkin I, Ung H, Li M (2002) Increasing fluoroquinolone resistance in Campylobacter jejuni, Pennsylvania, USA, 1982–2001. Emerg Infect Dis 8: 1501–1503.
[40]  Isenbarger DW, Hoge CW, Srijan A, Pitarangsi C, Vithayasai N, et al. (2002) Comparative antibiotic resistance of diarrheal pathogens from Vietnam and Thailand, 1996–1999. Emerg Infect Dis 8: 175–180.
[41]  Boonmar S, Morita Y, Fujita M, Sangsuk L, Suthivarakom K, et al. (2007) Serotypes, antimicrobial susceptibility, and gyrA gene mutation of Campylobacter jejuni isolates from humans and chickens in Thailand. Microbiol Immunol 51: 531–537.
[42]  Power EG, Phillips I (1992) Induction of the SOS gene (umuC) by 4-quinolone antibacterial drugs. J Med Microbiol 36: 78–82.
[43]  Cirz RT, O'Neill BM, Hammond JA, Head SR, Romesberg FE (2006) Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol 188: 7101–7110.
[44]  Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B, et al. (2007) Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 189: 531–539.
[45]  Kelley WL (2006) Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 62: 1228–1238.
[46]  Erill I, Campoy S, Barbe J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31: 637–656.
[47]  Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427: 72–74.
[48]  Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665–668.
[49]  Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, et al. (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3: e15.
[50]  Zhang Q, Sahin O, McDermott PF, Payot S (2006) Fitness of antimicrobial-resistant Campylobacter and Salmonella. Microb Infect 8: 1972–1978.
[51]  George DL, Witkin EM (1975) Ultraviolet light-induced responses of an mfd mutant of Escherichia coli B/r having a slow rate of dimer excision. Mutat Res 28: 347–354.
[52]  George DL, Witkin EM (1974) Slow excision repair in an mfd mutant of Escherichia coli B/r. Mol Gen Genet 133: 283–291.
[53]  Selby CP, Sancar A (1994) Mechanisms of transcription-repair coupling and mutation frequency decline. Microbiol Mol Biol Rev 58: 317–329.
[54]  Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260: 53–58.
[55]  Park JS, Marr MT, Roberts JW (2002) E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109: 757–767.
[56]  Ghachi ME, Bouhss A, Blanot D, Mengin-Lecreulx D (2004) The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279: 30106–30113.
[57]  Apfel CM, Takacs B, Fountoulakis M, Stieger M, Keck W (1999) Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J Bacteriol 181: 483–492.
[58]  Istivan TS, Coloe PJ (2006) Phospholipase A in gram-negative bacteria and its role in pathogenesis. Microbiol 152: 1263–1274.
[59]  Grant KA, Belandia IU, Dekker N, Richardson PT, Park SF (1997) Molecular characterization of pldA, the structural gene for a phospholipase A from Campylobacter coli, and its contribution to cell-associated hemolysis. Infect Immun 65: 1172–1180.
[60]  Selby CP, Sancar A (1995) Structure and function of transcription-repair coupling factor. J Biol Chem 270: 4882–4889.
[61]  Gmuender H, Kuratli K, Di Padova K, Gray CP, Keck W, et al. (2001) Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res 11: 28–42.
[62]  Farnell MB, Donoghue AM, Cole K, Reyes-Herrera I, Blore PJ, et al. (2005) Campylobacter susceptibility to ciprofloxacin and corresponding fluoroquinolone concentrations within the gastrointestinal tracts of chickens. J Appl Microbiol 99: 1043–1050.
[63]  Marrer E, Satoh AT, Johnson MM, Piddock LJV, Page MGP (2006) Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 50: 269–278.
[64]  Savery NJ (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 15: 326–333.
[65]  Ayora S, Rojo F, Ogasawara N, Nakai S, Alonso JC (1996) The Mfd Protein of Bacillus subtilis168 is involved in both transcription-coupled DNA repair and DNA recombination. J Mol Biol 256: 301–318.
[66]  Ross C, Pybus C, Pedraza-Reyes M, Sung H-M, Yasbin RE, et al. (2006) Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188: 7512–7520.
[67]  Doetsch PW (2002) Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res 510: 131–140.
[68]  Pham P, Rangarajan S, Woodgate R, Goodman MF (2001) Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli. Proc Natl Acad Sci USA 98: 8350–8354.
[69]  Bjedov I, Dasgupta CN, Slade D, Le Blastier S, Selva M, et al. (2007) Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 176: 1431–1440.
[70]  Cirz RT, Chin JK, Andes DR, de C, cy-Lagard V, et al. (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3: e176.
[71]  Guo B, Wang Y, Shi F, Barton Y-W, Plummer P, et al. (2008) CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 190: 1879–1890.
[72]  Lin J, Cagliero C, Guo B, Barton Y-W, Maurel M-C, et al. (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187: 7417–7424.
[73]  Wosten MMSM, Boeve M, Koot MGA, van Nuenen AC, van der Zeijst BAM (1998) Identification of Campylobacter jejuni promoter sequences. J Bacteriol 180: 594–599.
[74]  Lin J, Akiba M, Sahin O, Zhang Q (2005) CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 49: 1067–1075.
[75]  Yao R, Alm RA, Trust TJ, Guerry P (1993) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127–130.
[76]  Wang Y, Huang WM, Taylor DE (1993) Cloning and nucleotide sequence of the Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. Antimicrob Agents Chemother 37: 457–463.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133