全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry Inhibitors with Unique Characteristics

DOI: 10.1371/journal.ppat.1000109

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

References

[1]  Berkley SF, Koff WC (2007) Scientific and policy challenges to development of an AIDS vaccine. Lancet 370: 94–101.
[2]  (2007) AIDS Epidemic Update. December 2007. Joint United Nations Programme on HIV/AIDS and World Health Organization.
[3]  Belyakov IM, Berzofsky JA (2004) Immunobiology of mucosal HIV infection and the basis for development of a new generation of mucosal AIDS vaccines. Immunity 20: 247–253.
[4]  Klasse PJ, Shattock R, Moore JP (2007) Antiretroviral drug-based microbicides to prevent HIV-1 sexual transmission. Annu Rev Med 59: 455–71.
[5]  Stone A (2002) Microbicicdes: a new approach to preventing HIV and other sexually transmitted infections. Nature Reviews Drug Discovery 1: 977–985.
[6]  Balzarini J, Van Damme L (2007) Microbicide drug candidates to prevent HIV infection. Lancet 369: 787–797.
[7]  Hughes LM, Griffith R, Aitken RJ (2007) The search for a topical dual action spermicide/microbicide. Curr Med Chem 14: 775–786.
[8]  Doncel GF (2006) Exploiting common targets in human fertilization and HIV infection: development of novel contraceptive microbicides. Hum Reprod Update 12: 103–117.
[9]  Check E (2007) Scientists rethink approach to HIV gels. Nature 446: 12.
[10]  Hillier SL, Moench T, Shattock R, Black R, Reichelderfer P, et al. (2005) In vitro and in vivo: the story of nonoxynol 9. J Acquir Immune Defic Syndr 39: 1–8.
[11]  Ramjee G, Govinden R, Morar NS, Mbewu A (2007) South Africa's Experience of the Closure of the Cellulose Sulphate Microbicide Trial. PLoS Med 4: e235. doi: 10.1371/journal.pmed.0040235.
[12]  Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, et al. (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13: 857–861.
[13]  van de Wijgert JH, Braunstein SL, Morar NS, Jones HE, Madurai L, et al. (2007) Carraguard Vaginal Gel Safety in HIV-Positive Women and Men in South Africa. J Acquir Immune Defic Syndr 46: 538–546.
[14]  D'Cruz OJ, Uckun FM (2006) Dawn of non-nucleoside inhibitor-based anti-HIV microbicides. J Antimicrob Chemother 57: 411–423.
[15]  Fletcher P, Kiselyeva Y, Wallace G, Romano J, Griffin G, et al. (2005) The nonnucleoside reverse transcriptase inhibitor UC-781 inhibits human immunodeficiency virus type 1 infection of human cervical tissue and dissemination by migratory cells. J Virol 79: 11179–11186.
[16]  Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, et al. (2004) Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306: 485–487.
[17]  Veazey RS, Klasse PJ, Schader SM, Hu Q, Ketas TJ, et al. (2005) Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 438: 99–102.
[18]  Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, et al. (2003) Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 9: 343–346.
[19]  Binz HK, Amstutz P, Plückthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23: 1257–1268.
[20]  Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332: 489–503.
[21]  Stumpp MT, Amstutz P (2007) DARPins: a true alternative to antibodies. Curr Opin Drug Discov Devel 10: 153–159.
[22]  Amstutz P, Koch H, Binz HK, Deuber SA, Plückthun A (2006) Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng Des Sel 19: 219–229.
[23]  Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, et al. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22: 575–582.
[24]  Huber T, Steiner D, R?thlisberger D, Plückthun A (2007) In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na(+)-citrate symporter CitS as an example. J Struct Biol 159: 206–221.
[25]  Zahnd C, Pecorari F, Straumann N, Wyler E, Plückthun A (2006) Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J Biol Chem 281: 35167–35175.
[26]  Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, et al. (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem.
[27]  Kawe M, Forrer P, Amstutz P, Plückthun A (2006) Isolation of intracellular proteinase inhibitors derived from designed ankyrin repeat proteins by genetic screening. J Biol Chem 281: 40252–40263.
[28]  Schweizer A, Roschitzki-Voser H, Amstutz P, Briand C, Gulotti-Georgieva M, et al. (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15: 625–636.
[29]  Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG (2006) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5: e7. doi:10.1371/journal.pbio.0050007.
[30]  Allaway GP, Davis-Bruno KL, Beaudry GA, Garcia EB, Wong EL, et al. (1995) Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 11: 533–539.
[31]  Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94: 4937–4942.
[32]  Zahnd C, Amstutz P, Plückthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4: 269–279.
[33]  Zahnd C, Spinelli S, Luginbuhl B, Amstutz P, Cambillau C, et al. (2004) Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J Biol Chem 279: 18870–18877.
[34]  Davis SJ, Schockmel GA, Somoza C, Buck DW, Healey DG, et al. (1992) Antibody and HIV-1 gp120 recognition of CD4 undermines the concept of mimicry between antibodies and receptors. Nature 358: 76–79.
[35]  Healey D, Dianda L, Moore JP, McDougal JS, Moore MJ, et al. (1990) Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4+ cells from virus binding. J Exp Med 172: 1233–1242.
[36]  Burkly LC, Olson D, Shapiro R, Winkler G, Rosa JJ, et al. (1992) Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion. J Immunol 149: 1779–1787.
[37]  Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, et al. (2003) Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci U S A 100: 1700–1705.
[38]  Reichelt P, Schwarz C, Donzeau M (2006) Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr Purif 46: 483–488.
[39]  Furuta RA, Nishikawa M, Fujisawa J (2006) Real-time analysis of human immunodeficiency virus type 1 Env-mediated membrane fusion by fluorescence resonance energy transfer. Microbes Infect 8: 520–532.
[40]  Montefiori D (2004) Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. New York: John Wiley and Sons, Inc. pp. 12.11.11–12.11.17.
[41]  Manrique A, Rusert P, Joos B, Fischer M, Kuster H, et al. (2007) In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5 and 4E10. J Virol 81: 8793–8808.
[42]  Rusert P, Kuster H, Joos B, Misselwitz B, Gujer C, et al. (2005) Virus isolates during acute and chronic human immunodeficiency virus type 1 infection show distinct patterns of sensitivity to entry inhibitors. J Virol 79: 8454–8469.
[43]  Rusert P, Fischer M, Joos B, Leemann C, Kuster H, et al. (2004) Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol. Virology 326: 113–129.
[44]  Pugach P, Marozsan AJ, Ketas TJ, Landes EL, Moore JP, et al. (2007) HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 361: 212–228.
[45]  Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, et al. (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79: 10108–10125.
[46]  Li M, Salazar-Gonzalez JF, Derdeyn CA, Morris L, Williamson C, et al. (2006) Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. J Virol 80: 11776–11790.
[47]  Berenbaum M (1978) A method for testing for synergy with any number of agents. J Infect Dis 137: 122–130.
[48]  Loewe S (1928) Die quantitativen Probleme der Pharmakologie. Ergebn Physiol 28: 47–187.
[49]  Trkola A, Kuster H, Leemann C, Oxenius A, Fagard C, et al. (2004) Humoral immunity to HIV-1: kinetics of antibody responses in chronic infection reflects capacity of immune system to improve viral set point. Blood 104: 1784–1792.
[50]  Rusert P, Kuster H, Joos B, Misselwitz B, Gujer C, et al. (2005) Virus isolates during acute and chronic human immunodeficiency virus type 1 infection show distinct patterns of sensitivity to entry inhibitors. J Virol 79: 8454–8469.
[51]  Binley JM, Trkola A, Ketas T, Schiller D, Clas B, et al. (2000) The effect of highly active antiretroviral therapy on binding and neutralizing antibody responses to human immunodeficiency virus type 1 infection. J Infect Dis 182: 945–949.
[52]  Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, et al. (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417: 95–98.
[53]  Frank I, Stoessel H, Gettie A, Turville SG, Bess JW Jr, Lifson JD, Sivin I, Romani N, Robbiani M (2008) A fusion inhibitor prevents dendritic cell (DC) spread of immunodeficiency viruses but not DC activation of virus-specific T cells. J Virol. in press, Epub ahead of print.
[54]  Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171: 131–137.
[55]  Smith JG, Liu X, Kaufhold RM, Clair J, Caulfield MJ (2001) Development and validation of a gamma interferon ELISPOT assay for quantitation of cellular immune responses to varicella-zoster virus. Clin Diagn Lab Immunol 8: 871–879.
[56]  Sakihama T, Smolyar A, Reinherz EL (1995) Oligomerization of CD4 is required for stable binding to class II major histocompatibility complex proteins but not for interaction with human immunodeficiency virus gp120. Proc Natl Acad Sci U S A 92: 6444–6448.
[57]  Clayton LK, Hussey RE, Steinbrich R, Ramachandran H, Husain Y, et al. (1988) Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335: 363–366.
[58]  Montefiori D (2004) Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. In: Coligan JEKA, Margulies DH, Shevach EM, Strober W, editors. Current protocols in immunology. New York: John Wiley and Sons. pp. 12.11.11–12.11.17.
[59]  Zahnd C, Wyler E, Schwenk JM, Steiner D, Lawrence MC, et al. (2007) A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J Mol Biol 369: 1015–1028.
[60]  Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, et al. (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. NatMed 4: 1302–1307.
[61]  Lalezari JP, Henry K, O'Hearn M, Montaner JS, Piliero PJ, et al. (2003) Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348: 2175–2185.
[62]  Lazzarin A, Clotet B, Cooper D, Reynes J, Arasteh K, et al. (2003) Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 348: 2186–2195.
[63]  Burton DR, Pyati J, Koduri R, Sharp SJ, Thornton GB, et al. (1994) Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266: 1024–1027.
[64]  Purtscher M, Trkola A, Grassauer A, Schulz PM, Klima A, et al. (1996) Restricted antigenic variability of the epitope recognized by the neutralizing gp41 antibody 2F5. Aids 10: 587–593.
[65]  Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, et al. (2001) A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 17: 1757–1765.
[66]  Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, et al. (1996) Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70: 1100–1108.
[67]  Olson WC, Rabut GE, Nagashima KA, Tran DN, Anselma DJ, et al. (1999) Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol 73: 4145–4155.
[68]  Xiong Y, Kern P, Chang H, Reinherz E (2001) T Cell Receptor Binding to a pMHCII Ligand Is Kinetically Distinct from and Independent of CD4. J Biol Chem 276: 5659–5667.
[69]  Kuritzkes DR, Jacobson J, Powderly WG, Godofsky E, DeJesus E, et al. (2004) Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 189: 286–291.
[70]  Este JA, Telenti A (2007) HIV entry inhibitors. Lancet 370: 81–88.
[71]  Healey DG, Dianda L, Buck D, Schroeder K, Truneh A, et al. (1991) A highly selected panel of anti-CD4 antibodies fails to induce anti-idiotypic antisera mediating human immunodeficiency virus neutralization. Eur J Immunol 21: 1491–1498.
[72]  Matthias LJ, Yam PT, Jiang XM, Vandegraaff N, Li P, et al. (2002) Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat Immunol 3: 727–732.
[73]  Moore JP, McKeating JA, Huang YX, Ashkenazi A, Ho DD (1992) Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J Virol 66: 235–243.
[74]  Moore JP, Sattentau QJ, Klasse PJ, Burkly LC (1992) A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 66: 4784–4793.
[75]  Truneh A, Buck D, Cassatt DR, Juszczak R, Kassis S, et al. (1991) A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. J Biol Chem 266: 5942–5948.
[76]  Boon L, Holland B, Gordon W, Liu P, Shiau F, et al. (2002) Development of anti-CD4 MAb hu5A8 for treatment of HIV-1 infection: preclinical assessment in non-human primates. Toxicology 172: 191–203.
[77]  Reimann KA, Lin W, Bixler S, Browning B, Ehrenfels BN, et al. (1997) A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res Hum Retroviruses 13: 933–943.
[78]  Hamad AR, O'Herrin SM, Lebowitz MS, Srikrishnan A, Bieler J, et al. (1998) Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J Exp Med 188: 1633–1640.
[79]  Lahm HW, Stein S (1985) Characterization of recombinant human interleukin-2 with micromethods. J Chromatogr 326: 357–361.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133