全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Activation of the Unfolded Protein Response Is Required for Defenses against Bacterial Pore-Forming Toxin In Vivo

DOI: 10.1371/journal.ppat.1000176

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pore-forming toxins (PFTs) constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR) is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK) kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.

References

[1]  Alouf JE (2003) Molecular features of the cytolytic pore-forming bacterial protein toxins. Folia Microbiol 48: 5–16.
[2]  van der Goot FG (2003) Membrane-Damaging Toxins: Pore Formation. In: Burns DL, Barbieri JT, Iglewski BH, Rappuoli R, editors. Bacterial Protein Toxins. Washington, DC: Am. Soc. Microbiol. pp. 189–202.
[3]  de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37: 409–433.
[4]  Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13: 347–350.
[5]  Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423–435.
[6]  Huffman DL, Abrami L, Sasik R, Corbeil J, Van Der Goot FG, et al. (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 101: 10995–11000.
[7]  Husmann M, Dersch K, Bobkiewicz W, Beckmann E, Veerachato G, et al. (2006) Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus α-toxin or streptolysin O. Biochem Biophys Res Commun 344: 1128–1134.
[8]  Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B (2007) Bacterial pore-forming toxins: The (w)hole story? Cell Mol Life Sci.
[9]  Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279: 25935–25938.
[10]  Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569: 29–63.
[11]  Shen X, Ellis RE, Lee K, Liu CY, Yang K, et al. (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107: 893–903.
[12]  Shen X, Ellis RE, Sakaki K, Kaufman RJ (2005) Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genet 1: e37. doi:10.1371/journal.pgen.0010037.
[13]  Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96.
[14]  Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ (2005) ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35: 395–416.
[15]  Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293: 860–864.
[16]  Griffitts JS, Huffman DL, Whitacre JL, Barrows BD, Marroquin LD, et al. (2003) Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem 278: 45594–45602.
[17]  Laurent V, Brooks DR, Coates D, Isaac RE (2001) Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. Eur J Biochem 268: 5430–5438.
[18]  Rutkowski DT, Kaufman RJ (2007) That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32: 469–476.
[19]  Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13: 1211–1233.
[20]  Ratner AJ, Hippe KR, Aguilar JL, Bender MH, Nelson AL, et al. (2006) Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem 281: 12994–12998.
[21]  Bechill J, Chen Z, Brewer JW, Baker SC (2008) Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression. J Virol 82: 4492–4501.
[22]  Zhang K, Shen X, Wu J, Sakaki K, Saunders T, et al. (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124: 587–599.
[23]  Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115: 2656–2664.
[24]  Vitale A, Boston RS (2008) Endoplasmic Reticulum Quality Control and the Unfolded Protein Response: Insights from Plants. Traffic: in press.
[25]  Yamazaki T, Muramoto M, Nishimura S, Kita Y (2004) Suppressive effects of FR167653, an inhibitor of p38 mitogen-activated kinase, on calreticulin mRNA expression induced by endoplasmic reticulum stresses. Eur J Pharmacol 484: 147–156.
[26]  Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66: 1702–1711.
[27]  Nguyen DT, Kebache S, Fazel A, Wong HN, Jenna S, et al. (2004) Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell 15: 4248–4260.
[28]  Misra UK, Pizzo SV (2005) Up-regulation of GRP78 and antiapoptotic signaling in murine peritoneal macrophages exposed to insulin. J Leukoc Biol 78: 187–194.
[29]  Luo S, Lee AS (2002) Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation. Biochem J 366: 787–795.
[30]  Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, et al. (2005) Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171: 61–73.
[31]  Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20: 55–72.
[32]  Huffman DL, Bischof LJ, Griffitts JS, Aroian RV (2004) Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. Int J Med Microbiol 293: 599–607.
[33]  Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38: 409–415.
[34]  Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.
[35]  Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126: 1135–1145.
[36]  Aroian R, van der Goot FG (2007) Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10: 57–61.
[37]  Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
[38]  Bischof LJ, Huffman DL, Aroian RV (2006) Assays for toxicity studies in C. elegans with Bt crystal proteins. Methods Mol Biol 351: 139–154.
[39]  Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, et al. (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci U S A 103: 15154–15159.
[40]  Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96: 2408–2413.
[41]  Buckley JT, Halasa LN, Lund KD, MacIntyre S (1981) Purification and some properties of the hemolytic toxin aerolysin. Can J Biochem 59: 430–435.
[42]  Sulston J, Hodgkin J (1988) Methods. In: Wood WB, editor. The Nematode Caenorhabditis elegans. Plainview: Cold Spring Harbor Laboratory Press. pp. 587–606.
[43]  Finney DJ (1971) Probit Analysis. Cambridge, England: University Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133