全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prion Protein Amino Acid Determinants of Differential Susceptibility and Molecular Feature of Prion Strains in Mice and Voles

DOI: 10.1371/journal.ppat.1000113

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bank vole is a rodent susceptible to different prion strains from humans and various animal species. We analyzed the transmission features of different prions in a panel of seven rodent species which showed various degrees of phylogenetic affinity and specific prion protein (PrP) sequence divergences in order to investigate the basis of vole susceptibility in comparison to other rodent models. At first, we found a differential susceptibility of bank and field voles compared to C57Bl/6 and wood mice. Voles showed high susceptibility to sheep scrapie but were resistant to bovine spongiform encephalopathy, whereas C57Bl/6 and wood mice displayed opposite features. Infection with mouse-adapted scrapie 139A was faster in voles than in C57Bl/6 and wood mice. Moreover, a glycoprofile change was observed in voles, which was reverted upon back passage to mice. All strains replicated much faster in voles than in mice after adapting to the new species. PrP sequence comparison indicated a correlation between the transmission patterns and amino acids at positions 154 and 169 (Y and S in mice, N and N in voles). This correlation was confirmed when inoculating three additional rodent species: gerbils, spiny mice and oldfield mice with sheep scrapie and 139A. These rodents were chosen because oldfield mice do have the 154N and 169N substitutions, whereas gerbil and spiny mice do not have them. Our results suggest that PrP residues 154 and 169 drive the susceptibility, molecular phenotype and replication rate of prion strains in rodents. This might have implications for the assessment of host range and molecular traceability of prion strains, as well as for the development of improved animal models for prion diseases.

References

[1]  Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, et al. (1985) A cellular gene encodes PrP 27–30 protein. Cell 40: 735–746.
[2]  Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515–1522.
[3]  Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24: 519–550.
[4]  Prusiner SB, Scott M, Foster D, Pan KM, Groth D, et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63: 673–686.
[5]  Asante EA, Linehan JM, Desbruslais M, Joiner S, Gowland I, et al. (2002) BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 21: 6358–6366.
[6]  Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, et al. (2002) A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34: 921–932.
[7]  Nonno R, Di Bari MA, Cardone F, Vaccari G, Fazzi P, et al. (2006) Efficient transmission and characterization of Creutzfeldt–Jakob disease strains in bank voles. PLoS Pathog 2(2): e12. doi: 10.1371/journal.ppat.0020012.
[8]  Cartoni C, Schininà ME, Maras B, Nonno R, Vaccari G, et al. (2005) Identification of the pathological prion protein allotypes in scrapie-infected heterozygous bank voles (Clethrionomys glareolus) by high-performance liquid chromatography-mass spectrometry. J Chromatog A 1081: 122–126.
[9]  Piening N, Nonno R, Di Bari M, Walter S, Windl O, et al. (2006) Conversion efficiency of bank vole prion protein in vitro is determined by residues 155 and 170, but does not correlate with the high susceptibility of bank voles to sheep scrapie in vivo. J Biol Chem 281: 9373–9384.
[10]  Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, et al. (1987) Distinct prion proteins in short and long scrapie incubation period mice. Cell 51: 651–662.
[11]  Billeter M, Riek R, Wider G, Hornemann S, Glockshuber R, et al. (1997) Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci U S A 94: 7281–7285.
[12]  Wilson DE, Reeder DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore: The Johns Hopkins University Press..
[13]  Vorberg I, Groschup MH, Pfaff E, Priola SA (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77: 2003–2009.
[14]  Vilotte J-L, Soulier S, Essalmani R, Stinnakre M-G, Vaiman D, et al. (2001) Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine PrP. J Virol 75: 5977–5984.
[15]  Bruce ME, Boyle A, Cousens S, McConnell I, Foster J, et al. (2002) Strain characterization of natural sheep scrapie and comparison with BSE. J Gen Virol 83: 695–704.
[16]  Chandler RL, Turfrey BA (1972) Inoculation of voles, chinese hamsters, gerbils and guinea-pigs with scrapie brain material. Res Vet Sci 13: 219–224.
[17]  Taguchi Y, Mohri S, Ironside JW, Muramoto T, Kitamoto T (2003) Humanized knock-in mice expressing chimeric prion protein showed varied susceptibility to different human prions. Am J Pathol 163: 2585–2593.
[18]  Kimberlin RH, Walker CA (1978) Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J Gen Virol 39: 487–496.
[19]  Caughey B (2003) Prion protein conversions: insight into mechanisms, TSE transmission barriers and strains. Br Med Bull 66: 109–120.
[20]  Kimberlin RH, Walker CA (1977) Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 34: 295–304.
[21]  Raymond GJ, Hope J, Kocisko DA, Priola SA, Raymond LD, et al. (1997) Molecular assessment of the transmissibilities of BSE and scrapie to humans. Nature 388: 285–288.
[22]  Kimberlin RH, Cole S, Walker CA (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J Gen Virol 68: 1875–1881.
[23]  Priola SA, Chesebro B (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol 69: 7754–7758.
[24]  Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci U S A 101: 8342–8347.
[25]  Gossert AD, Bonjour S, Dominikus AL, Fiorito F, Wüthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci U S A 102: 646–650.
[26]  Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, et al. (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447: 453–457.
[27]  Hunter N, Goldmann W, Marshall E, O'Neill G (2000) Sheep and goats: natural and experimental TSEs and factors influencing incidence of disease. Arch Virol Suppl 16: 181–188.
[28]  Goldmann W, Houston F, Stewart P, Perucchini M, Foster J, et al. (2006) Ovine prion protein variant A(136)R(154)L(168)Q(171) increases resistance to experimental challenge with bovine spongiform encephalopathy agent. J Gen Virol 87: 3741–3745.
[29]  Vaccari G, D'Agostino C, Nonno R, Rosone F, Conte M, et al. (2007) Prion protein alleles showing a protective effect on the susceptibility of sheep to scrapie and bovine spongiform encephalopathy. J Virol 81: 7306–7309.
[30]  Kaneko K, Zulianello L, Scott M, Cooper CM, Wallace AC, et al. (1997) Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci U S A 94: 10069–10074.
[31]  Gorfe AA, Caflisch A (2007) Ser170 controls the conformational multiplicity of the loop 166–175 in prion proteins: implication for conversion and species barrier. FASEB J. . doi:10.1096/fj.07-8292com.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133