Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence.
Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8: 225–230.
[5]
Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ (2006) Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4: 272–282.
[6]
Sandford JP (1985) Melioidosis : Practice and principles of infectious diseases;. In: Mandell GL, Douglas RG, Bennet JE, editors. New York: Churchill Livingstone. pp. 1250–1254.
[7]
Choy JL, Mayo M, Janmaat A, Currie BJ (2000) Animal melioidosis in Australia. Acta Trop 74: 153–158.
[8]
Gan YH, Chua KL, Chua HH, Liu B, Hii CS, et al. (2002) Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol 44: 1185–1197.
[9]
Howard K, Inglis TJ (2005) Disinfection of Burkholderia pseudomallei in potable water. Water Res 39: 1085–1092.
[10]
Inglis TJ, Foster NF, Gal D, Powell K, Mayo M, et al. (2004) Preliminary report on the northern Australian melioidosis environmental surveillance project. Epidemiol Infect 132: 813–820.
[11]
Ketterer PJ, Webster WR, Shield J, Arthur RJ, Blackall PJ, et al. (1986) Melioidosis in intensive piggeries in south eastern Queensland. Aust Vet J 63: 146–149.
[12]
Brook MD, Currie B, Desmarchelier PM (1997) Isolation and identification of Burkholderia pseudomallei from soil using selective culture techniques and the polymerase chain reaction. J Appl Microbiol 82: 589–596.
[13]
Dance DA (2000) Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human-animal hosts. Acta Trop 74: 159–168.
[14]
Finkelstein RA, Atthasampunna P, Chulasamaya M (2000) Pseudomonas (Burkholderia) pseudomallei in Thailand, 1964–1967: geographic distribution of the organism, attempts to identify cases of active infection, and presence of antibody in representative sera. Am J Trop Med Hyg 62: 232–239.
[15]
Nachiangmai N, Patamasucon P, Tipayamonthein B, Kongpon A, Nakaviroj S (1985) Pseudomonas pseudomallei in southern Thailand. Southeast Asian J Trop Med Public Health 16: 83–87.
[16]
Thomas AD, Forbes-Faulkner J, Parker M (1979) Isolation of Pseudomonas pseudomallei from clay layers at defined depths. Am J Epidemiol 110: 515–521.
[17]
Wuthiekanun V, Smith MD, Dance DA, White NJ (1995) Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans R Soc Trop Med Hyg 89: 41–43.
[18]
Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.
[19]
Duangsonk K, Gal D, Mayo M, Hart CA, Currie BJ, et al. (2006) Use of a variable amplicon typing scheme reveals considerable variation in the accessory genomes of isolates of Burkholderia pseudomallei. J Clin Microbiol 44: 1323–1334.
[20]
Yu Y, Kim HS, Chua HH, Lin CH, Sim SH, et al. (2006) Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailanensis. BMC Microbiol 6: 46.
[21]
Moore RA, Reckseidler-Zenteno S, Kim H, Nierman W, Yu Y, et al. (2004) Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun 72: 4172–4187.
[22]
Dobrindt U, Agerer F, Michaelis K, Janka A, Buchrieser C, et al. (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185: 1831–1840.
[23]
Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, et al. (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100: 8484–8489.
[24]
Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, et al. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99: 1556–1561.
[25]
Monastyrskaya G, Fushan A, Abaev I, Filyukova O, Kostina M, et al. (2004) Genome-wide comparison reveals great inter- and intraspecies variability in B. pseudomallei and B. mallei pathogens. Res Microbiol 155: 781–793.
[26]
DeShazer D (2004) Genomic diversity of Burkholderia pseudomallei clinical isolates: subtractive hybridization reveals a Burkholderia mallei-specific prophage in B. pseudomallei 1026b. J Bacteriol 186: 3938–3950.
[27]
Fushan A, Monastyrskaya G, Abaev I, Kostina M, Filyukova O, et al. (2005) Genome-wide identification and mapping of variable sequences in the genomes of Burkholderia mallei and Burkholderia pseudomallei. Res Microbiol 156: 278–288.
[28]
Tumapa S, Holden MT, Vesaratchavest M, Wuthiekanun V, Limmathurotsakul D, et al. (2008) Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics 9: 190.
[29]
Ong C, Ooi CH, Wang D, Chong H, Ng KC, et al. (2004) Patterns of large-scale genomic variation in virulent and avirulent Burkholderia species. Genome Res 14: 2295–2307.
[30]
Ou K, Ong C, Koh SY, Rodrigues F, Sim SH, et al. (2005) Integrative genomic, transcriptional, and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol 187: 4276–4285.
[31]
Rodrigues F, Sarkar-Tyson M, Harding SV, Sim SH, Chua HH, et al. (2006) Global map of growth-regulated gene expression in Burkholderia pseudomallei, the causative agent of melioidosis. J Bacteriol 188: 8178–8188.
[32]
Lin CH, Bourque G, Tan P (2008) A Comparative Synteny Map of Burkholderia Species Links Large-scale Genome Rearrangements to Fine-scale Nucleotide Variation in Prokaryotes. Mol Biol Evol 25: 549–558.
[33]
Kim HS, Schell MA, Yu Y, Ulrich RL, Sarria SH, Nierman WC, DeShazer D (2007) Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6: 174.
[34]
Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, et al. (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101: 14240–14245.
[35]
Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB (1996) Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20: 151–164.
[36]
Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700.
[37]
Khan SA, Everest P, Servos S, Foxwell N, Zahringer U, et al. (1998) A lethal role for lipid A in Salmonella infections. Mol Microbiol 29: 571–579.
[38]
Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 297: 277–295.
[39]
Sarkar-Tyson M, Thwaite JE, Harding SV, Smither SJ, Oyston PC, et al. (2007) Polysaccharides and virulence of Burkholderia pseudomallei. J Med Microbiol 56: 1005–1010.
[40]
Anuntagool N, Wuthiekanun V, White NJ, Currie BJ, Sermswan RW, et al. (2006) Lipopolysaccharide heterogeneity among Burkholderia pseudomallei from different geographic and clinical origins. Am J Trop Med Hyg 74: 348–352.
[41]
Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183: 6579–89.
[42]
Zhou L, Wang J, Zhang L-H (2007) Modulation of Bacterial Type III Secretion System by a Spermidine Transporter Dependent Signaling Pathway. PLoS ONE 2(12): e1291. doi:10.1371/journal.pone.0001291.
[43]
Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, et al. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95: 3140–3145.
[44]
Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, et al. (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41: 2068–2079.
[45]
McCombie RL, Finkelstein RA, Woods DE (2006) Multilocus sequence typing of historical Burkholderia pseudomallei isolates collected in Southeast Asia from 1964 to 1967 provides insight into the epidemiology of melioidosis. J Clin Microbiol 44: 2951–2962.
[46]
Vesaratchavest M, Tumapa S, Day NP, Wuthiekanun V, Chierakul W, et al. (2006) Nonrandom distribution of Burkholderia pseudomallei clones in relation to geographical location and virulence. J Clin Microbiol 44: 2553–2557.
[47]
DeShazer D, Brett PJ, Woods DE (1998) The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 30: 1081–1100.
[48]
Nelson M, Prior JL, Lever MS, Jones HE, Atkins TP, et al. (2004) Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis. J Med Microbiol 53: 1177–1182.
[49]
Casadevall A, Pirofski LA (2007) Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot Cell 6: 2169–2174.
[50]
Kanaphun P, Thirawattanasuk N, Suputtamongkol Y, Naigowit P, Dance DA, et al. (1993) Serology and carriage of Pseudomonas pseudomallei: a prospective study in 1000 hospitalized children in northeast Thailand. J Infect Dis 167: 230–233.
[51]
Bishop CM (1995) Neural Networks for Pattern Recognition: Oxford University Press.
[52]
Hedges LV, Olkin I (1985) Statistical methods for meta-analysis Academic Press.
[53]
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSSB 57: 289–300.
[54]
Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.
[55]
Lozada-Chavez I, Janga SC, Collado-Vides J (2006) Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res 34: 3434–3445.
[56]
Chong CE, Lim BS, Nathan S, Mohamed R (2006) In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets. In Silico Biol 6: 341–346.
[57]
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nuc Acid Res 27: 573–580.
[58]
Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186: 1518–1530.
[59]
Spratt BG, Hanage WP, Li B, Aanensen DM, Feil EJ (2004) Displaying the relatedness among isolates of bacterial species – the eBURST approach. FEMS Microbiol Lett 241: 129–134.
[60]
Choi JH, Jung HY, Kim HS, Cho HG (2000) PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16: 1056–1058.
[61]
Moore RA, DeShazer D, Reckseidler S, Weissmann A, Woods DE (1999) Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother 43: 465–470.
[62]
Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1: 784–791.
[63]
Woods DE, Straus DC, Johanson WG Jr, Berry VK, Bass JA (1980) Role of Pili in Adherence of Pseudomonas aeruginosa to Mammalian Buccal Epithelial Cells. Infect Immun 29: 1146–1151.