全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Control of Parasitophorous Vacuole Expansion by LYST/Beige Restricts the Intracellular Growth of Leishmania amazonensis

DOI: 10.1371/journal.ppat.1000179

Full-Text   Cite this paper   Add to My Lib

Abstract:

The intracellular protozoan Leishmania replicates in parasitophorous vacuoles (PV) that share many features with late endosomes/lysosomes. L. amazonensis PVs expand markedly during infections, but the impact of PV size on parasite intracellular survival is still unknown. Here we show that host cells infected with L. amazonensis upregulate transcription of LYST/Beige, which was previously shown to regulate lysosome size. Mutations in LYST/Beige caused further PV expansion and enhanced L. amazonensis replication. In contrast, LYST/Beige overexpression led to small PVs that did not sustain parasite growth. Treatment of LYST/Beige over-expressing cells with vacuolin-1 reversed this phenotype, expanding PVs and promoting parasite growth. The opposite was seen with E-64d, which reduced PV size in LYST-Beige mutant cells and inhibited L. amazonensis replication. Enlarged PVs appear to protect parasites from oxidative damage, since inhibition of nitric oxide synthase had no effect on L. amazonensis viability within large PVs, but enhanced their growth within LYST/Beige-induced small PVs. Thus, the upregulation of LYST/Beige in infected cells functions as a host innate response to limit parasite growth, by reducing PV volume and inhibiting intracellular survival.

References

[1]  Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A, Rittig MG (2000) Fibroblasts as host cells in latent leishmaniosis. J Exp Med 191: 2121.
[2]  Antoine JC, Prina E, Lang T, Courret N (1998) The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol 6: 392.
[3]  Morehead J, Coppens I, Andrews NW (2002) Opsonization modulates Rac-1 activation during cell entry by Leishmania amazonensis. Infect Immun 70: 4571.
[4]  Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2: 845.
[5]  Gomes IN, Calabrich AF, Tavares Rda S, Wietzerbin J, de Freitas L A, et al. (2003) Differential properties of CBA/J mononuclear phagocytes recovered from an inflammatory site and probed with two different species of Leishmania. Microbes Infect 5: 251.
[6]  Qi H, Ji J, Wanasen N, Soong L (2004) Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infect Immun 72: 988.
[7]  McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201: 206.
[8]  Veras PS, de Chastellier C, Rabinovitch M (1992) Transfer of zymosan (yeast cell walls) to the parasitophorous vacuoles of macrophages infected with Leishmania amazonensis. J Exp Med 176: 639.
[9]  Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3: 1041.
[10]  Barbosa MD, Nguyen QA, Tchernev VT, Ashley JA, Detter JC, et al. (1996) Identification of the homologous beige and Cheiak-Higashi syndrome genes. Nature 382: 262.
[11]  Nagle DJ, Karim MA, Wolf EA, Holmgren L, Bork P, et al. (1996) Identification and mutation analysis of the complete gene for Chediak Higashi syndrome. Nature Genetics 14: 307.
[12]  Ward DM, Griffiths GM, Stinchcombe JC, Kaplan J (2000) Analysis of the lysosomal storage disease Chediak-Higashi syndrome. Traffic 1: 816.
[13]  Perou CM, Leslie JD, Green W, Li L, Ward DM, et al. (1997) The Beige/Chediak-Higashi syndrome gene encodes a widely expressed cytosolic protein. J Biol Chem 272: 29790.
[14]  Tchernev VT, Mansfield TA, Giot L, Kumar AM, Nandabalan K, et al. (2002) The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol Med 8: 56.
[15]  Ward DM, Shiflett SL, Huynh D, Vaughn MB, Prestwich G, et al. (2003) Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes. Traffic 4: 403.
[16]  Han JD, Baker NE, Rubin CS (1997) Molecular characterization of a novel A kinase anchor protein from Drosophila melanogaster. J Biol Chem 272: 26611.
[17]  Wang X, Herberg FW, Laue MM, Wullner C, Hu B, et al. (2000) Neurobeachin: A protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic. J Neurosci 20: 8551.
[18]  Hollenbeck PJ, Swanson JA (1990) Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 346: 864.
[19]  Veras PS, de Chastellier C, Moreau MF, Villiers V, Thibon M, et al. (1994) Fusion between large phagocytic vesicles: targeting of yeast and other particulates to phagolysosomes that shelter the bacterium Coxiella burnetii or the protozoan Leishmania amazonensis in Chinese hamster ovary cells. J Cell Sci 107: 3065.
[20]  Perou CM, Moore KJ, Nagle DL, Misumi DJ, Woolf EA, et al. (1996) Identification of the murine beige gene by YAC complementation and positional cloning. Nat Genet 13: 303.
[21]  Tanabe F, Cui SH, Ito M (2000) Abnormal down-regulation of PKC is responsible for giant granule formation in fibroblasts from CHS (beige) mice–a thiol proteinase inhibitor, E-64-d, prevents giant granule formation in beige fibroblasts. J Leukoc Biol 67: 749.
[22]  Huynh C, Roth D, Ward DM, Kaplan J, Andrews NW (2004) Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells. Proc Natl Acad Sci U S A 101: 16795.
[23]  Huynh C, Andrews NW (2005) The small chemical vacuolin-1 alters the morphology of lysosomes without inhibiting Ca(2+)-regulated exocytosis. EMBO Rep 6: 843.
[24]  Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173: 17.
[25]  Liew FY, O'Donnell CA (1993) Immunology of leishmaniasis. Adv Parasitol 32: 161.
[26]  Chakravortty D, Hansen-Wester I, Hensel M (2002) Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195: 1155.
[27]  Miller BH, Fratti RA, Poschet JF, Timmins GS, Master SS, Burgos M, Marletta MA, Deretic V (2004) Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun 72: 2872.
[28]  Gantt KR, Goldman TL, McCormick ML, Miller MA, Jeronimo SM, et al. (2001) Oxidative responses of human and murine macrophages during phagocytosis of Leishmania chagasi. J Immunol 167: 893.
[29]  Tournier C, Hess P, Yang DD, Xu J, Turner TK, et al. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870.
[30]  Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188: 1603.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133