[1] | Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113: 1093–1101.
|
[2] | Golden M, Marra C, Holmes K (2003) Update on syphilis: resurgence of an old problem. JAMA 290: 1510–1514.
|
[3] | Bharti A, Nally J, Ricaldi J, Matthias M, Diaz M, et al. (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757–771.
|
[4] | Cutler S (2006) Possibilities for relapsing fever reemergence. Emerg Infect Dis 12: 369–374.
|
[5] | Barbour AG (2005) Relapsing Fever. In: Goodman JL, Dennis DT, Sonenshine DE, editors. Tick-Borne Diseases of Humans. Washington, D.C.: ASM Press. pp. 268–291.
|
[6] | Radolf J, Lukehart S, editors. (2006) Pathogenic Treponema Molecular and Cellular Biology. Hethersett: Caister Academic Press.
|
[7] | Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36: 47–73.
|
[8] | Goldenberg R (2003) The infectious origin of stillbirth. Am J Obstet Gynecol 189: 861–873.
|
[9] | Coyle P, Dattwyler R (1990) Spirochetal infection of the central nervous system. Infect Dis Clin North Am 4: 731–746.
|
[10] | Stanek G, Strle F (2003) Lyme borreliosis. Lancet 362: 1639–1647.
|
[11] | Thomas DD, Cadavid D, Barbour AG (1994) Differential association of Borrelia species with cultured neural cells. J Infect Dis 169: 445–448.
|
[12] | Thomas DD, Higbie LM (1990) In vitro association of leptospires with host cells. Infect Immun 58: 581–585.
|
[13] | Thomas DD, Navab M, Haake DA, Fogelman AM, Miller JN, et al. (1988) Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc Natl Acad Sci U S A 85: 3608–3612.
|
[14] | Comstock LE, Thomas DD (1989) Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun 57: 1626–1628.
|
[15] | Comstock LE, Thomas DD (1991) Characterization of Borrelia burgdorferi invasion of cultured endothelial cells. Microb Pathog 10: 137–148.
|
[16] | Sadziene A, Thomas DD, Bundoc VG, Holt SC, Barbour AG (1991) A flagella-less mutant of Borrelia burgdorferi. Structural, molecular, and in vitro functional characterization. J Clin Invest 88: 82–92.
|
[17] | Thomas D, Comstock L (1989) Interaction of Lyme disease spirochetes with cultured eucaryotic cells. Infect Immun 57: 1324–1326.
|
[18] | Szczepanski A, Furie M, Benach J, Lane B, Fleit H (1990) Interaction between Borrelia burgdorferi and endothelium in vitro. J Clin Invest 85: 1637–1647.
|
[19] | Ma Y, Sturrock A, Weis JJ (1991) Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect Immun 59: 671–678.
|
[20] | Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, et al. (2002) Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochete. Molecular Microbiology 43: 281–295.
|
[21] | Sartakova M, Dobrikova E, Cabello FC (2000) Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97: 4850–4855.
|
[22] | Eggers C, Caimano M, Radolf J (2006) Use of green fluorescent protein transcriptional reporters to study differential gene expression by Borrelia burgdorferi. In: Cabello F, Hulinska D, Godfrey H, editors. Molecular biology of spirochetes. Washington, D.C.: IOS Pres. pp. 264–280.
|
[23] | Carroll JA, Stewart PE, Rosa P, Elias AF, Garon CF (2003) An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149: 1819–1828.
|
[24] | Miller JC, von Lackum K, Woodman ME, Stevenson B (2006) Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb Pathog 41: 43–47.
|
[25] | Jain R, Munn L, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2: 266–276.
|
[26] | Mempel T, Scimone M, Mora J, Andrian Uv (2004) In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr Opin Immunol 16: 406–417.
|
[27] | O'Toole R, Hofsten JV, Rosqvist R, Olsson P, Wolf-Watz H (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathog 37: 41–46.
|
[28] | Laschke M, Kerdudou S, Herrmann M, Menger M (2005) Intravital fluorescence microscopy: a novel tool for the study of the interaction of Staphylococcus aureus with the microvascular endothelium in vivo. J Infect Dis 191: 435–443.
|
[29] | Amino R, Thiberge S, Martin B, Celli S, Shorte S, et al. (2006) Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12: 220–224.
|
[30] | Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3: 129–143.
|
[31] | Miller WG, Bates AH, Horn ST, Brandle MT, Wachtel MR, et al. (2000) Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new gfp, yfp and cfp plasmids. Appl Environ Microbiol 66: 5426–5436.
|
[32] | Barthold S, Persing D, Armstrong A, Peeples R (1991) Kinetics of Borrelia burgdorferi dissemination and evolution of disease after intradermal inoculation of mice. Am J Pathol 139: 263–273.
|
[33] | Wolgemuth CW, Charon NW, Goldstein SF, Goldstein RE (2006) The flagellar cytoskeleton of the spirochetes. J Mol Microbiol Biotechnol 11: 221–227.
|
[34] | Goldstein SF, Charon NW, Kreiling JA (1994) Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc Natl Acad Sci U S A 91: 3433–3437.
|
[35] | Li C, Bakker RG, Motaleb MA, Sartakova ML, Cabello FC, et al. (2002) Asymmetrical flagellar rotation in Borrelia burgdorferi nonchemotactic mutants. Proc Natl Acad Sci U S A 99: 6169–6174.
|
[36] | Tokarz R, Anderton JM, Katona LI, Benach JL (2004) Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun 72: 5419–5432.
|
[37] | Charon NW, Lawrence CW, O'Brien S (1981) Movement of antibody-coated latex beads attached to the spirochete Leptospira interrogans. Proc Natl Acad Sci U S A 78: 7166–7170.
|
[38] | Albelda S, Muller W, Buck C, Newman P (1991) Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol 114: 1059–1068.
|
[39] | Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, et al. (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203: 2569–2575.
|
[40] | Schmid G (1989) Epidemiology and clinical similarities of human spirochetal diseases. Rev Infect Dis 11: S1460–1469.
|
[41] | Sackstein R (2005) The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr Opin Hematol 12: 444–450.
|
[42] | Coburn J, Fischer JR, Leong JM (2005) Solving a sticky problem: new genetic approaches to host cell adhesion by the Lyme disease spirochete. Mol Microbiol 57: 1182–1195.
|
[43] | Coleman J, Sellati T, Testa J, Kew R, Furie M, et al. (1995) Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect Immun 63: 2478–2484.
|
[44] | Coburn J, Magoun L, Bodary S, Leong JM (1998) Integrins avb3 and a5b1 mediate attachment of Lyme disease spirochetes to human cells. Infect Immun 66: 1946–1952.
|
[45] | Leong JM, Wang H, Magoun L, Field JA, Morrissey PE, et al. (1998) Different classes of proteoglycans contribute to the attachment of Borrelia burgdorferi to cultured endothelial and brain cells. Infect Immun 66: 994–999.
|
[46] | Isaacs R (1994) Borrelia burgdorferi bind to epithelial cell proteoglycan. J Clin Invest 93: 809–819.
|
[47] | Leong JM, Morrissey PE, Ortega-Barria E, Pereira MEA, Coburn J (1995) Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63: 874–883.
|
[48] | Cabello FC, Godfrey HP, Newman SA (2007) Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends in Microbiology 15: 350–354.
|
[49] | Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100: 158–173.
|
[50] | Cox PJ, Twigg GI (1974) Leptospiral motility. Nature 250: 260–261.
|
[51] | Motaleb MA, Corum L, Bono JL, Elias AF, Rosa P, et al. (2000) Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci U S A 97: 10899–10904.
|
[52] | Li C, Corum L, Morgan D, Rosey EL, Stanton TB, et al. (2000) The spirochete FlaA periplasmic flagellar sheath protein impacts flagellar helicity. J Bacteriol 182: 6698–6706.
|
[53] | Motaleb MA, Miller MR, Li C, Bakker RG, Goldstein SF, et al. (2005) CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J Bacteriol 187: 7963–7969.
|
[54] | Elias AF, Bono JL, Kupko JJ 3rd, Stewart PE, Krum JG, et al. (2003) New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J Mol Microbiol Biotechnol 6: 29–40.
|
[55] | Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521–525.
|
[56] | Kawabata H, Norris SJ, Watanabe H (2004) BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72: 7147–7154.
|
[57] | Bono JL, Elias AF, Kupko JJ III, Stevenson B, Tilly K, et al. (2000) Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol 182: 2445–2452.
|
[58] | Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol 47: 253–259.
|
[59] | Bankhead T, Chaconas G (2007) The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 65: 1547–1558.
|
[60] | Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199: 641–648.
|
[61] | Tourand Y, Bankhead T, Wilson SL, Putteet-Driver AD, Barbour AG, et al. (2006) Differential telomere processing by Borrelia telomere resolvases in vitro but not in vivo. J Bacteriol 188: 7378–7386.
|
[62] | Beaurepaire C, Chaconas G (2005) Mapping of essential replication functions of the linear plasmid lp17 of B. burgdorferi by targeted deletion walking. Mol Microbiol 57: 132–142.
|
[63] | Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97: 13865–13870.
|
[64] | Jewett MW, Byram R, Bestor A, Tilly K, Lawrence K, et al. (2007) Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi. Mol Microbiol 66: 975–990.
|
[65] | Hwang JM, Yamanouchi J, Santamaria P, Kubes P (2004) A critical temporal window for selectin-dependent CD4+ lymphocyte homing and initiation of late-phase inflammation in contact sensitivity. J Exp Med 199: 1223–1234.
|
[66] | Hickey MJ, Kanwar S, McCafferty DM, Granger DN, Eppihimer MJ, et al. (1999) Varying roles of E-selectin and P-selectin in different microvascular beds in response to antigen. J Immunol 162: 1137–1143.
|
[67] | Mitchell DJ, Li P, Reinhardt PH, Kubes P (2000) Importance of L-selectin-dependent leukocyte-leukocyte interactions in human whole blood. Blood 95: 2954–2959.
|
[68] | Norman MU, Hulliger S, Colarusso P, Kubes P (2008) Multichannel fluorescence spinning disk microscopy reveals early endogenous CD4 T Cell recruitment in contact sensitivity via complement. J Immunol 180: 510–521.
|