全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

IL-12 and GM-CSF in DNA/MVA Immunizations against HIV-1 CRF12_BF Nef Induced T-Cell Responses With an Enhanced Magnitude, Breadth and Quality

DOI: 10.1371/journal.pone.0037801

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF) and heterologous (B) Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide. This study indicates that the incorporation of DNA expressing IL-12 in DNA/MVA schemes produced the best results in terms of improvements of T-cell-response key properties such as breadth, cross-reactivity and quality (avidity and pattern of cytokines secreted). These relevant results contribute to the design of strategies aimed to induce T-cell responses against HIV antigens with higher quality.

References

[1]  (2011) UNAIDS Global HIV/AIDS Response. Progress Report.
[2]  Taylor BS, Hammer SM (2008) The challenge of HIV-1 subtype diversity. N Engl J Med 359: 1965–1966.
[3]  Ministerio de Salud PdlN (2008) Boletín sobre el VIH-SIDA en la Argentina
[4]  Gomez-Carrillo M, Pampuro S, Duran A, Losso M, Harris DR, et al. (2006) Analysis of HIV type 1 diversity in pregnant women from four Latin American and Caribbean countries. AIDS Res Hum Retroviruses 22: 1186–1191.
[5]  Pando MA, De Salvo C, Bautista CT, Eyzaguirre L, Carrion G, et al. (2008) Human immunodeficiency virus and tuberculosis in Argentina: prevalence, genotypes and risk factors. J Med Microbiol 57: 190–197.
[6]  Segura M, Sosa Estani S, Marone R, Bautista CT, Pando MA, et al. (2007) Buenos Aires cohort of men who have sex with men: prevalence, incidence, risk factors, and molecular genotyping of HIV type 1. AIDS Res Hum Retroviruses 23: 1322–1329.
[7]  Carr JK, Avila M, Gomez Carrillo M, Salomon H, Hierholzer J, et al. (2001) Diverse BF recombinants have spread widely since the introduction of HIV-1 into South America. Aids 15: F41–47.
[8]  Hierholzer J, Montano S, Hoelscher M, Negrete M, Hierholzer M, et al. (2002) Molecular Epidemiology of HIV Type 1 in Ecuador, Peru, Bolivia, Uruguay, and Argentina. AIDS Res Hum Retroviruses 18: 1339–1350.
[9]  Sierra M, Thomson MM, Rios M, Casado G, Castro RO, et al. (2005) The analysis of near full-length genome sequences of human immunodeficiency virus type 1 BF intersubtype recombinant viruses from Chile, Venezuela and Spain reveals their relationship to diverse lineages of recombinant viruses related to CRF12_BF. Infect Genet Evol 5: 209–217.
[10]  Currier JR, deSouza M, Chanbancherd P, Bernstein W, Birx DL, et al. (2002) Comprehensive screening for human immunodeficiency virus type 1 subtype-specific CD8 cytotoxic T lymphocytes and definition of degenerate epitopes restricted by HLA-A0207 and -C(W)0304 alleles. J Virol 76: 4971–4986.
[11]  Geldmacher C, Currier JR, Gerhardt M, Haule A, Maboko L, et al. (2007) In a mixed subtype epidemic, the HIV-1 Gag-specific T-cell response is biased towards the infecting subtype. Aids 21: 135–143.
[12]  Rodriguez AM, Turk G, Pascutti MF, Falivene J, Gherardi MM (2010) [Development of vaccines for HIV-1. Relevance of subtype-specific cellular immunity.]. Medicina (B Aires) 70: 543–554.
[13]  Hinkula J, Svanholm C, Schwartz S, Lundholm P, Brytting M, et al. (1997) Recognition of prominent viral epitopes induced by immunization with human immunodeficiency virus type 1 regulatory genes. J Virol 71: 5528–5539.
[14]  Erfle V, Goebel FD, Guzman CA, Le Grand R (2005) Vaccines based on Nef and on Nef/DeltaV2 Env. Microbes Infect 7: 1400–1404.
[15]  Gomez CE, Najera JL, Jimenez V, Bieler K, Wild J, et al. (2007) Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 25: 1969–1992.
[16]  Brave A, Gudmundsdotter L, Gasteiger G, Hallermalm K, Kastenmuller W, et al. (2007) Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: study of immunological memory and long-term toxicology. Infect Agent Cancer 2: 14.
[17]  Christian Hoffmann JKRyBSK (2007) HIV Medicine
[18]  Lichterfeld M, Yu XG, Cohen D, Addo MM, Malenfant J, et al. (2004) HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity. Aids 18: 1383–1392.
[19]  Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, et al. (2003) Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77: 2081–2092.
[20]  Turk G, Gherardi MM, Laufer N, Saracco M, Luzzi R, et al. (2008) Magnitude, breadth, and functional profile of T-cell responses during human immunodeficiency virus primary infection with B and BF viral variants. J Virol 82: 2853–2866.
[21]  Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. (1999) Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189: 991–998.
[22]  Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, et al. (1997) Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3: 205–211.
[23]  Deeks SG, Walker BD (2007) Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27: 406–416.
[24]  Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, et al. (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283: 1748–1752.
[25]  Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, et al. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361: 2209–2220.
[26]  Gherardi MM, Najera JL, Perez-Jimenez E, Guerra S, Garcia-Sastre A, et al. (2003) Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 77: 7048–7057.
[27]  Gherardi MM, Esteban M (2005) Recombinant poxviruses as mucosal vaccine vectors. J Gen Virol 86: 2925–2936.
[28]  Ranasinghe C, Eyers F, Stambas J, Boyle DB, Ramshaw IA, et al. (2011) A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations. Vaccine 29: 3008–3020.
[29]  De Rose R, Chea S, Dale CJ, Reece J, Fernandez CS, et al. (2005) Subtype AE HIV-1 DNA and recombinant Fowlpoxvirus vaccines encoding five shared HIV-1 genes: safety and T cell immunogenicity in macaques. Vaccine 23: 1949–1956.
[30]  Gherardi MM, Ramirez JC, Esteban M (2000) Interleukin-12 (IL-12) enhancement of the cellular immune response against human immunodeficiency virus type 1 env antigen in a DNA prime/vaccinia virus boost vaccine regimen is time and dose dependent: suppressive effects of IL-12 boost are mediated by nitric oxide. J Virol 74: 6278–6286.
[31]  Spearman P, Kalams S, Elizaga M, Metch B, Chiu YL, et al. (2009) Safety and immunogenicity of a CTL multiepitope peptide vaccine for HIV with or without GM-CSF in a phase I trial. Vaccine 27: 243–249.
[32]  Gherardi MM, Ramirez JC, Esteban M (2003) IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. J Gen Virol 84: 1961–1972.
[33]  Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, et al. (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 115: 1177–1187.
[34]  Morrow MP, Weiner DB (2008) Cytokines as adjuvants for improving anti-HIV responses. Aids 22: 333–338.
[35]  Sabatte J, Maggini J, Nahmod K, Amaral MM, Martinez D, et al. (2007) Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 18: 5–17.
[36]  Curtsinger JM, Mescher MF (2010) Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 22: 333–340.
[37]  Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, et al. (2009) The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114: 1289–1298.
[38]  MAaI Egan, Zimra R (2002) The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines. Clinical and Applied Immunology 2: 32.
[39]  Tapia E, Perez-Jimenez E, Lopez-Fuertes L, Gonzalo R, Gherardi MM, et al. (2003) The combination of DNA vectors expressing IL-12+IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes Infect 5: 73–84.
[40]  Ahlers JD, Dunlop N, Alling DW, Nara PL, Berzofsky JA (1997) Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte-macrophage colony-stimulating factor and TNF-alpha synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J Immunol 158: 3947–3958.
[41]  Okada E, Sasaki S, Ishii N, Aoki I, Yasuda T, et al. (1997) Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. J Immunol 159: 3638–3647.
[42]  Rodriguez AM, Turk G, Pascutti MF, Ferrer F, Najera JL, et al. (2009) Characterization of DNA and MVA vectors expressing Nef from HIV-1 CRF12_BF revealed high immune specificity with low cross-reactivity against subtype B. Virus Res 146: 1–12.
[43]  Arold ST, Baur AS (2001) Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Trends Biochem Sci 26: 356–363.
[44]  Monaco DC, Rodriguez AM, Pascutti MF, Carobene M, Falivene J, et al. (2011) T-cell immune responses against Env from CRF12_BF and subtype B HIV-1 show high clade-specificity that can be overridden by multiclade immunizations. PLoS One 6: e17185.
[45]  Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107: 4781–4789.
[46]  Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, et al. (2007) Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med 204: 2473–2485.
[47]  Vingert B, Perez-Patrigeon S, Jeannin P, Lambotte O, Boufassa F, et al. (2010) HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. PLoS Pathog 6: e1000780.
[48]  Johnston MI, Fauci AS (2007) An HIV vaccine–evolving concepts. N Engl J Med 356: 2073–2081.
[49]  Burgers WA, Shephard E, Monroe JE, Greenhalgh T, Binder A, et al. (2008) Construction, characterization, and immunogenicity of a multigene modified vaccinia Ankara (MVA) vaccine based on HIV type 1 subtype C. AIDS Res Hum Retroviruses 24: 195–206.
[50]  De Candia C, Espada C, Duette G, Ghiglione Y, Turk G, et al. (2010) Viral replication is enhanced by an HIV-1 intersubtype recombination-derived Vpu protein. Virol J 7: 259.
[51]  Turk G, Carobene M, Monczor A, Rubio AE, Gomez-Carrillo M, et al. (2006) Higher transactivation activity associated with LTR and Tat elements from HIV-1 BF intersubtype recombinant variants. Retrovirology 3: 14.
[52]  Winstone N, Wilson AJ, Morrow G, Boggiano C, Chiuchiolo MJ, et al. (2011) Enhanced Control of Pathogenic Simian Immunodeficiency Virus SIVmac239 Replication in Macaques Immunized with an Interleukin-12 Plasmid and a DNA Prime-Viral Vector Boost Vaccine Regimen. J Virol 85: 9578–9587.
[53]  Schadeck EB, Sidhu M, Egan MA, Chong SY, Piacente P, et al. (2006) A dose sparing effect by plasmid encoded IL-12 adjuvant on a SIVgag-plasmid DNA vaccine in rhesus macaques. Vaccine 24: 4677–4687.
[54]  Gomez CE, Najera JL, Sanchez R, Jimenez V, Esteban M (2009) Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. Vaccine 27: 3165–3174.
[55]  Rosa DS, Ribeiro SP, Almeida RR, Mairena EC, Postol E, et al. (2011) A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses. PLoS One 6: e16921.
[56]  Van der Ryst E, Nakasone T, Habel A, Venet A, Gomard E, et al. (1998) Study of the immunogenicity of different recombinant Mengo viruses expressing HIV1 and SIV epitopes. Res Virol 149: 5–20.
[57]  Majumder B, Gray B, McBurney S, Schaefer TM, Dentchev T, et al. (2003) Attenuated nef DNA vaccine construct induces cellular immune response: role in HIV-1 multiprotein vaccine. Immunol Lett 89: 207–214.
[58]  Battig P, Saudan P, Storni T, Gallimore A, Bachmann MF (2005) Limited in vivo reactivity of polyclonal effector cytotoxic T cells towards altered peptide ligands. Microbes Infect 7: 729–737.
[59]  Markiewicz MA, Wise EL, Buchwald ZS, Cheney EE, Hansen TH, et al. (2009) IL-12 enhances CTL synapse formation and induces self-reactivity. J Immunol 182: 1351–1361.
[60]  DeBenedette MA, Calderhead DM, Ketteringham H, Gamble AH, Horvatinovich JM, et al. (2008) Priming of a novel subset of CD28+ rapidly expanding high-avidity effector memory CTL by post maturation electroporation-CD40L dendritic cells is IL-12 dependent. J Immunol 181: 5296–5305.
[61]  Zhu Q, Egelston C, Gagnon S, Sui Y, Belyakov IM, et al. (2010) Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J Clin Invest 120: 607–616.
[62]  Dallo S, Esteban M (1987) Isolation and characterization of attenuated mutants of vaccinia virus. Virology 159: 408–422.
[63]  Institute of Laboratory Animal Research CoLS, National Research Council. USA (1996) Guide for the Care and Use of Laboratory Animals

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133