Heat shock proteins (Hsps) are a set of molecular chaperones involved in cellular repair. They provide protective mechanisms that allow cells to survive potentially lethal insults, In response to a conditioning stress their expression is increased. Here we examined the connection between Hsps and Aβ42, the amyloid peptide involved in the pathological sequence of Alzheimer’s disease (AD). Extracellular Aβ42 associates with neuronal cells and is a major constituent of senile plaques, one of the hallmarks of AD. Although Hsps are generally thought to prevent accumulation of misfolded proteins, there is a lack of mechanistic evidence that heat shock chaperones directly modulate Aβ42 toxicity. In this study we show that neither extracellular Aβ42 nor Aβ42/PrPC trigger the heat shock response in neurons. To address the influence of the neuroprotective heat shock response on cellular Aβ42, Western analysis of Aβ42 was performed following external Aβ42 application. Five hours after a conditioning heat shock, Aβ42 association with CAD cells was increased compared to control neurons. However, at forty-eight hours following heat shock Aβ42 levels were reduced compared to that found for control cells. Moreover, transient transfection of the stress induced Hsp40, decreased CAD levels of Aβ42. In contrast to CAD cells, hippocampal neurons transfected with Hsp40 retained Aβ42 indicating that Hsp40 modulation of Aβ42 proteostasis is cell specific. Mutation of the conserved HPD motif within Hsp40 significantly reduced the Hsp40-mediated Aβ42 increase in hippocampal cultures indicating the importance of this motif in regulating cellular Aβ42. Our data reveal a biochemical link between Hsp40 expression and Aβ42 proteostasis that is cell specific. Therefore, increasing Hsp40 therapeutically with the intention of interfering with the pathogenic cascade leading to neurodegeneration in AD should be pursued with caution.
References
[1]
Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362: 329–344.
[2]
Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10: 698–712.
[3]
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356.
[4]
Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285: 12463–12468.
[5]
Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277: 1348–1358.
[6]
Mohamed A, Posse dC (2011) Abeta internalization by neurons and glia. Int J Alzheimers Dis 2011: 127984. 127984 p.
[7]
Tampellini D, Rahman N, Lin MT, Capetillo-Zarate E, Gouras GK (2011) Impaired beta-Amyloid Secretion in Alzheimer’s Disease Pathogenesis. J Neurosci 31: 15384–15390.
[8]
Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69: 22–32.
[9]
Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280: 33097–33100.
[10]
Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6: 11–22.
[11]
Magrane J, Querfurth HW (2008) Heat Shock Proteins, Unfolded Protein Response Chaperones and Alzheimer’s Disease. In: Asea AA, Brown IR, editors. Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection. Springer. pp. 25–50.
[12]
Perez N, Sugar J, Charya S, Johnson G, Merril C, et al. (1991) Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res Mol Brain Res 11: 249–254.
[13]
Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, et al. (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurology 41: 345–350.
[14]
Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119: 203–208.
[15]
Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, et al. (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci U S A 99: 9439–9444.
[16]
Evans CG, Wisen S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1–42) aggregation in vitro. J Biol Chem 281: 33182–33191.
[17]
Magrane J, Rosen KM, Smith RC, Walsh K, Gouras GK, et al. (2005) Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci 25: 10960–10969.
[18]
King M, Nafar F, Clarke J, Mearow K (2009) The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of beta-amyloid peptide. J Neurosci Res 87: 3161–3175.
[19]
Hoshino T, Murao N, Namba T, Takehara M, Adachi H, et al. (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31: 5225–5234.
[20]
Ojha J, Karmegam RV, Masilamoni JG, Terry AV, Cashikar AG (2011) Behavioral defects in chaperone-deficient Alzheimer’s disease model mice. PLoS ONE 6: e16550.
[21]
Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, et al. (1999) The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262: 152–156.
[22]
Sakono M, Zako T, Ueda H, Yohda M, Maeda M (2008) Formation of highly toxic soluble amyloid beta oligomers by the molecular chaperone prefoldin. FEBS J 275: 5982–5993.
[23]
Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 136: 22–31.
[24]
Carnini A, Lear JD, Eckenhoff RG (2007) Inhaled anesthetic modulation of amyloid beta(1-40) assembly and growth. Curr Alzheimer Res 4: 233–241.
[25]
Eckenhoff RG, Johansson JS, Wei H, Carnini A, Kang B, et al. (2004) Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 101: 703–709.
[26]
Bateman DA, McLaurin J, Chakrabartty A (2007) Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding. BMC Neurosci 8: 29.
[27]
Bateman DA, Chakrabartty A (2009) Two distinct conformations of Abeta aggregates on the surface of living PC12 cells. Biophys J 96: 4260–4267.
[28]
Bateman DA, Chakrabartty A (2011) Cell surface binding and internalization of abeta modulated by degree of aggregation. Int J Alzheimers Dis 2011: 962352. 962352 p.
[29]
Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457: 1128–1132.
[30]
Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, et al. (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A 107: 2295–2300.
[31]
Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, et al. (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30: 6367–6374.
[32]
Schwarze-Eicker K, Keyvani K, Gortz N, Westaway D, Sachser N, et al. (2005) Prion protein (PrPc) promotes beta-amyloid plaque formation. Neurobiol Aging 26: 1177–1182.
[33]
You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, et al. (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 109: 1737–1742.
[34]
Caetano FA, Lopes MH, Hajj GN, Machado CF, Pinto AC, et al. (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 28: 6691–6702.
[35]
Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG (1998) Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 52: 691–698.
[36]
Yang AJ, Chandswangbhuvana D, Shu T, Henschen A, Glabe CG (1999) Intracellular accumulation of insoluble, newly synthesized abetan-42 in amyloid precursor protein-transfected cells that have been treated with Abeta1–42. J Biol Chem 274: 20650–20656.
[37]
Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, et al. (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci U S A 104: 11062–11067.
[38]
Gibbs SJ, Barren B, Beck KE, Proft J, Zhao X, et al. (2009) Hsp40 couples with the CSPalpha chaperone complex upon induction of the heat shock response. PLoS ONE 4: e4595.
[39]
Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229–240.
[40]
Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 272: 6324–6331.
[41]
Haraguchi T, Fisher S, Olofsson S, Endo T, Groth D, et al. (1989) Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch Biochem Biophys 274: 1–13.
[42]
Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, et al. (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62: 788–801.
[43]
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, et al. (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14: 837–842.
[44]
Tyszkiewicz JP, Yan Z (2005) beta-Amyloid peptides impair PKC-dependent functions of metabotropic glutamate receptors in prefrontal cortical neurons. J Neurophysiol 93: 3102–3111.
[45]
Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24: 3370–3378.
[46]
Suzuki T, Usuda N, Murata S, Nakazawa A, Ohtsuka K, et al. (1999) Presence of molecular chaperones, heat shock cognate (Hsc) 70 and heat shock proteins (Hsp) 40, in the postsynaptic structures of rat brain. Brain Res 816: 99–110.
[47]
Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81: 522–529.
[48]
Takeuchi H, Kobayashi Y, Yoshihara T, Niwa J, Doyu M, et al. (2002) Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res 949: 11–22.
[49]
Zhao X, Braun AP, Braun JE (2008) Biological Roles of Neural J Proteins. Cell Mol Life Sci 65: 2385–2396.
[50]
Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11: 579–592.
[51]
Westhoff B, Chapple JP, van der Spuy J, Hohfeld J, Cheetham ME (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15: 1058–1064.
[52]
Ungewickell E, Ungewickell H, Holstein SEH, Linder R, Prasad K, et al. (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378: 632–635.
[53]
Watson ED, Geary-Joo C, Hughes M, Cross JC (2007) The Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta. Development 134: 1809–1817.
[54]
Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12: 51–58.
[55]
Batulan Z, Shinder GA, Minotti S, He BP, Doroudchi MM, et al. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 23: 5789–5798.
[56]
Rosales-Hernandez A, Beck KE, Zhao X, Braun AP, Braun JE (2008) RDJ2 (DNAJA2) chaperones neural G protein signaling pathways. Cell Stress Chaperones 14: 71–82.
[57]
Xu F, Proft J, Gibbs S, Winkfein B, Johnson JN, et al. (2010) Quercetin targets cysteine string protein (CSPalpha) and impairs synaptic transmission. PLoS ONE 5: e11045.
[58]
Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, et al. (2005) Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95: 834–847.
[59]
Florio T, Thellung S, Amico C, Robello M, Salmona M, et al. (1998) Prion protein fragment 106-126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res 54: 341–352.
[60]
Eiden M, Buschmann A, Kupfer L, Groschup MH (2006) Synthetic prions. J Vet Med B Infect Dis Vet Public Health 53: 251–256.
[61]
Zahn R, von Schroetter C, Wuthrich K (1997) Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett 417: 400–404.
[62]
Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27: 539–550.
[63]
Gutierrez RC, Hung J, Zhang Y, Kertesz AC, Espina FJ, et al. (2009) Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3. Neuroscience 162: 208–221.