全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Modelling the Genetic Risk in Age-Related Macular Degeneration

DOI: 10.1371/journal.pone.0037979

Full-Text   Cite this paper   Add to My Lib

Abstract:

Late-stage age-related macular degeneration (AMD) is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS) for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC) of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69–2.05) than patients aged 75 and above (1.45, 95% CI: 1.36–1.54). Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11–1131.96) for individuals in the highest category (GRS 3.44–5.18, 0.5% of the general population) compared to subjects with the most common genetic background (GRS ?0.05–1.70, 40.2% of general population). The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.

References

[1]  Congdon N, O'Colmain B, Klaver CCW, Klein R, Mu?oz B, et al. (2004) Causes and prevalence of visual impairment among adults in the United States. Archives of ophthalmology 122: 477–485. Available:http://www.ncbi.nlm.nih.gov/pubmed/15078?664.
[2]  de Jong PTVM (2006) Age-related macular degeneration. The New England journal of medicine 355: 1474–1485. Available:http://www.ncbi.nlm.nih.gov/pubmed/17021?323.
[3]  Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. The New England journal of medicine 358: 2606–2617. Available:http://www.ncbi.nlm.nih.gov/pubmed/18550?876.
[4]  Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, et al. (2006) Ranibizumab for neovascular age-related macular degeneration. The New England journal of medicine 355: 1419–1431. Available:http://www.ncbi.nlm.nih.gov/pubmed/17021?318.
[5]  Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, et al. (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. The New England journal of medicine 355: 1432–1444. Available:http://www.ncbi.nlm.nih.gov/pubmed/17021?319. Accessed 2011 Sept 28.
[6]  Seddon JM, Cote J, Page WF, Aggen SH, Neale MC (2005) The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Archives of ophthalmology 123: 321–327. Available:http://www.ncbi.nlm.nih.gov/pubmed/15767?473. Accessed 2012 Mar 21.
[7]  Fisher SA, Abecasis GR, Yashar BM, Zareparsi S, Swaroop A, et al. (2005) Meta-analysis of genome scans of age-related macular degeneration. Human molecular genetics 14: 2257–2264. Available:http://www.ncbi.nlm.nih.gov/pubmed/15987?700. Accessed 2010 Jul.
[8]  Klein RJ, Zeiss C, Chew EY, Tsai J-yue, Sackler RS, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science (New York, NY) 308: 385–389. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1512523&tool=pmcentrez?&rendertype=abstract. Accessed 2001 Jun 16.
[9]  Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, et al. (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 102: 7227–7232. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1088171&tool=pmcentrez?&rendertype=abstract.
[10]  Li M, Atmaca-sonmez P, Othman M, Branham KEH, Khanna R, et al. (2006) CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nature Genetics 38: 1049–1054. doi:10.1038/ng1871.
[11]  Hughes AE, Orr N, Esfandiary H, Diaz-torres M, Goodship T, et al. (2007) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nature Genetics 38: 1173–1178. doi:10.1038/ng1890.
[12]  Schmid-kubista KE, Tosakulwong N, Wu Y, Ryu E, Hecker LA, et al. (2009) Contribution of Copy Number Variation in the Regulation of Complement Activation Locus to Development of Age-Related Macular Degeneration. Investigative Ophthalmology 5070–5079. doi:10.1167/iovs.09-3975.
[13]  Fritsche LG, Lauer N, Hartmann A, Stippa S, Keilhauer CN, et al. (2010) An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Human molecular genetics 19: 4694–4704. Available:http://www.ncbi.nlm.nih.gov/pubmed/20843?825. Accessed 11 April 2011.
[14]  Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, et al. (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Human molecular genetics 14: 3227–3236. Available:http://www.ncbi.nlm.nih.gov/pubmed/16174?643. Accessed 2011 Aug 1.
[15]  Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, et al. (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nature genetics 38: 458–462. Available:http://www.ncbi.nlm.nih.gov/pubmed/16518?403.
[16]  Yates JRW, Sepp T, Matharu BK, Khan JC, Thurlby DA, et al. (2007) Complement C3 variant and the risk of age-related macular degeneration. The New England journal of medicine 357: 553–561. Available:http://www.ncbi.nlm.nih.gov/pubmed/17634?448.
[17]  Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, et al. (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nature genetics 39: 1200–1201. Available:http://www.ncbi.nlm.nih.gov/pubmed/17767?156.
[18]  Fagerness Ja, Maller JB, Neale BM, Reynolds RC, Daly MJ, et al. (2009) Variation near complement factor I is associated with risk of advanced AMD. European journal of human genetics: EJHG 17: 100–104. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2985963&tool=pmcentrez?&rendertype=abstract.
[19]  Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 107: 7401–7406. Available:http://www.ncbi.nlm.nih.gov/pubmed/20385?819.
[20]  Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M, et al. (2010) Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proceedings of the National Academy of Sciences of the United States of America 107: 7395–7400. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2867697&tool=pmcentrez?&rendertype=abstract.
[21]  Fritsche LG, Freitag-Wolf S, Bettecken T, Meitinger T, Keilhauer CN, et al. (2009) Age-related macular degeneration and functional promoter and coding variants of the apolipoprotein E gene. Human mutation 30: 1048–1053. Available:http://www.ncbi.nlm.nih.gov/pubmed/19384?966.
[22]  Klaver CCW, Kliffen M, Duijn CMV, Hofman A, Cruts M, et al. (1998) Genetic Association of Apolipoprotein E with Age-Related Macular Degeneration. Ophthalmic Research 200–206.
[23]  Yu Y, Bhangale TR, Fagerness J, Ripke S, Thorleifsson G, et al. (2011) Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Human molecular genetics 20: 3699–3709. Available:http://www.ncbi.nlm.nih.gov/pubmed/21665?990.
[24]  Janssens ACJW, Aulchenko YS, Elefante S, Borsboom GJJM (2006) Predictive testing for complex diseases using multiple genes: Fact or fiction? Genetics in Medicine 8: 395–400. doi:10.1097/01.gim.0000229689.18263.f4.
[25]  Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, et al. (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. The New England journal of medicine 359: 2208–2219. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2746946&tool=pmcentrez?&rendertype=abstract.
[26]  Seddon JM, Reynolds R, Maller J, Fagerness Ja, Daly MJ, et al. (2009) Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Investigative ophthalmology & visual science 50: 2044–2053. Available:http://www.ncbi.nlm.nih.gov/pubmed/19117?936.
[27]  Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, et al. (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics (Oxford, England) 24: 2938–2939. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2720775&tool=pmcentrez?&rendertype=abstract.
[28]  Friedrich U, Myers Ca, Fritsche LG, Milenkovich a, Wolf a, et al. (2011) Risk and non risk associated variants at the 10q26 AMD locus influence ARMS2 mRNA expression but exclude pathogenic effects due to protein deficiency. Human Molecular Genetics 20: 1387–1399. Available:http://www.hmg.oxfordjournals.org/cgi/do?i/10.1093/hmg/ddr020. Accessed 2011 Jan 21.
[29]  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 81: 559–575. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1950838&tool=pmcentrez?&rendertype=abstract.
[30]  Augood Ca, Vingerling JR, de Jong PTVM, Chakravarthy U, Seland J, et al. (2006) Prevalence of age-related maculopathy in older Europeans: the European Eye Study (EUREYE). Archives of ophthalmology 124: 529–535. Available:http://www.ncbi.nlm.nih.gov/pubmed/16606?879.
[31]  Friedman DS, O'Colmain BJ, Mu?oz B, Tomany SC, McCarty C, et al. (2004) Prevalence of age-related macular degeneration in the United States. Archives of ophthalmology 122: 564–572. Available:http://www.ncbi.nlm.nih.gov/pubmed/15078?675.
[32]  Jonasson F, Arnarsson A, Eiríksdottir G, Harris TB, Launer LJ, et al. (2011) Prevalence of age-related macular degeneration in old persons: Age, Gene/environment Susceptibility Reykjavik Study. Ophthalmology 118: 825–830. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3087833&tool=pmcentrez?&rendertype=abstract. Accessed 2011 Jul 25.
[33]  Gibson J, Cree A, Collins A, Lotery A, Ennis S (2010) Determination of a gene and environment risk model for age-related macular degeneration. The British journal of ophthalmology 94: 1382–1387. Available:http://www.ncbi.nlm.nih.gov/pubmed/20576?771.
[34]  Jakobsdottir J, Gorin MB, Conley YP, Ferrell RE, Weeks DE (2009) Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS genetics 5: e1000337. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2629574&tool=pmcentrez?&rendertype=abstract.
[35]  Spencer KL, Olson LM, Schnetz-Boutaud N, Gallins P, Agarwal A, et al. (2011) Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration. PloS one 6: e17784. Available:http://www.ncbi.nlm.nih.gov/pubmed/21455?292. Accessed 2011 3 Apr 3.
[36]  Seddon JM, Reynolds R, Yu Y, Daly MJ, Rosner B (2011) Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology 118: 2203–2211. Available:http://www.ncbi.nlm.nih.gov/pubmed/21959?373. Accessed 2012 Mar 2.
[37]  Mistry K, Cable G (2003) Meta-Analysis of Prostate-Specific Antigen and Digital Rectal Examination as Screening Tests for Prostate Carcinoma. The Journal of the American Board of Family Medicine 16: 95–101. Available:http://www.jabfm.org/cgi/doi/10.3122/jab?fm.16.2.95. Accessed 2012 Feb 18.
[38]  Miller JW (2010) Treatment of age-related macular degeneration: beyond VEGF. Japanese journal of ophthalmology 54: 523–528. Available:http://www.ncbi.nlm.nih.gov/pubmed/21191?711. Accessed 2011 Feb 7.
[39]  Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Archives of ophthalmology 119: 1417–1436. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1462955&tool=pmcentrez?&rendertype=abstract.
[40]  SanGiovanni JP, Chew EY, Clemons TE, Davis MD, Ferris FL, et al. (2007) The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Archives of ophthalmology 125: 671–679. Available:http://www.ncbi.nlm.nih.gov/pubmed/17502?507. Accessed 28 September 2011.
[41]  SanGiovanni JP, Chew EY, Clemons TE, Ferris FL, Gensler G, et al. (2007) The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Archives of ophthalmology 125: 1225–1232. Available:http://www.ncbi.nlm.nih.gov/pubmed/17846?363.
[42]  Klein R, Davis MD, Magli YL, Segal P, Klein BE, et al. (1991) The Wisconsin age-related maculopathy grading system. Ophthalmology 98: 1128–1134. Available:http://www.ncbi.nlm.nih.gov/pubmed/18434?53. Accessed 2011 Sept 28.
[43]  Bird a C, Bressler NM, Bressler SB, Chisholm IH, Coscas G, et al. (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Survey of ophthalmology 39: 367–374. Available:http://www.ncbi.nlm.nih.gov/pubmed/76043?60.
[44]  R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R website. Available:http://www.r-project.org/. Accessed 2012 May 2.
[45]  McFadden D (1974) Conditional Logit Analysis of Qualitative Choice Behavior. FRONTIERS IN ECONOMETRICS 105–142. Available:http://www.econ.berkeley.edu/reprints/mc?fadden/zarembka.pdf. /. Accessed 2012 May 2.
[46]  Hu B, Shao J, Palta M (2006) PSEUDO-R 2 IN LOGISTIC REGRESSION MODEL. Statistica Sinica 16: 847–860.
[47]  Chongsuvivatwong V (2010) epicalc: Epidemiological calculator. R website. Available:http://cran.r-project.org/web/packages/e?picalc/index.html. /. Accessed 2012 May 2.
[48]  Lumley T (2009) rmeta: Meta-analysis. R package version 2.16. R website. Available:http://cran.r-project.org/web/packages/r?meta/index.html. /. Accessed 2012 May 2.
[49]  Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, et al. (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of clinical epidemiology 54: 774–781. Available:http://www.ncbi.nlm.nih.gov/pubmed/11470?385.
[50]  Liu Q, Sung AH, Chen Z, Liu J, Huang X, et al. (2009) Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data. PloS one 4: e8250. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2789385&tool=pmcentrez?&rendertype=abstract. Accessed 2012 Feb 29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133