Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses.
References
[1]
McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, et al. (2001) Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis 33: 641–647.
[2]
Varkey JB, Perfect JR (2008) Rare and emerging fungal pulmonary infections. Semin Respir Crit Care Med 29: 121–131.
[3]
Erjavec Z, Kluin-Nelemans H, Verweij PE (2009) Trends in invasive fungal infections, with emphasis on invasive aspergillosis. Clin Microbiol Infect 15: 625–633.
[4]
Millner PD, Marsh PB, Snowden RB, Parr JF (1977) Occurrence of Aspergillus fumigatus during composting of sewage sludge. Appl Environ Microbiol 34: 765–772.
Latge JP (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9: 382–389.
[8]
Perfect JR, Cox GM, Lee JY, Kauffman CA, de Repentigny L, et al. (2001) The impact of culture isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis 33: 1824–1833.
[9]
Morgan J, Wannemuehler KA, Marr KA, Hadley S, Kontoyiannis DP, et al. (2005) Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol 43: Suppl 1S49–58.
[10]
Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA (2007) Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin Infect Dis 44: 531–540.
[11]
Baddley JW, Andes DR, Marr KA, Kontoyiannis DP, Alexander BD, et al. (2010) Factors associated with mortality in transplant patients with invasive aspergillosis. Clin Infect Dis 50: 1559–1567.
[12]
Beffa T, Staib F, Lott Fischer J, Lyon PF, Gumowski P, et al. (1998) Mycological control and surveillance of biological waste and compost. Med Mycol 36: Suppl 1137–145.
[13]
Trautmann NM RT, Krasny ME (2003) Monitoring Compost pH. Ithaca, NY: Cornell University Composting Resources.
[14]
van Heerden I, Cronje C, Swart SH, Kotze JM (2002) Microbial, chemical and physical aspects of citrus waste composting. Bioresour Technol 81: 71–76.
[15]
Rhodes JC (2006) Aspergillus fumigatus: growth and virulence. Med Mycol 44: Suppl 1S77–81.
[16]
Cooney NM, Klein BS (2008) Fungal adaptation to the mammalian host: it is a new world, after all. Curr Opin Microbiol 11: 511–516.
[17]
Park MK, Myers RA, Marzella L (1992) Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clin Infect Dis 14: 720–740.
[18]
Hall LA, Denning DW (1994) Oxygen requirements of Aspergillus species. J Med Microbiol 41: 311–315.
[19]
Wang W WX, Liu J, Masaharu , I , Yasuo I, Cui Z (2007) Effect of oxygen concentration on the composting process and maturity. Compost Sci Util 15: 184–190.
[20]
Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128: 263–276.
[21]
Carlsson PO, Palm F, Andersson A, Liss P (2001) Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50: 489–495.
[22]
Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, et al. (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20: 7377–7383.
[23]
West JB (1984) 1984 Armstrong lecture. Hypoxic man: lessons from extreme altitude. Aviat Space Environ Med 55: 1058–1062.
[24]
Warn PA, Sharp A, Guinea J, Denning DW (2004) Effect of hypoxic conditions on in vitro susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and Candida. J Antimicrob Chemother 53: 743–749.
[25]
Matherne GP, Headrick JP, Coleman SD, Berne RM (1990) Interstitial transudate purines in normoxic and hypoxic immature and mature rabbit hearts. Pediatr Res 28: 348–353.
[26]
Van Belle H, Goossens F, Wynants J (1987) Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia. Am J Physiol 252: H886–893.
[27]
Dewhirst MW (1998) Concepts of oxygen transport at the microcirculatory level. Semin Radiat Oncol 8: 143–150.
[28]
Tarrand JJ, Han XY, Kontoyiannis DP, May GS (2005) Aspergillus hyphae in infected tissue: evidence of physiologic adaptation and effect on culture recovery. J Clin Microbiol 43: 382–386.
[29]
Grahl N, Cramer RA Jr (2010) Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi? Med Mycol 48: 1–15.
[30]
Ernst JF, Tielker D (2009) Responses to hypoxia in fungal pathogens. Cell Microbiol 11: 183–190.
[31]
Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, et al. (2008) A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog 4: e1000200.
[32]
Chun CD, Liu OW, Madhani HD (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog 3: e22.
[33]
Chang YC, Bien CM, Lee H, Espenshade PJ, Kwon-Chung KJ (2007) Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol 64: 614–629.
[34]
Zhou Z, Takaya N, Shoun H (2010) Multi-energy metabolic mechanisms of the fungus Fusarium oxysporum in low oxygen environments. Biosci Biotechnol Biochem 74: 2431–2437.
[35]
Panagiotou G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115: 425–434.
[36]
Kiers J, Zeeman AM, Luttik M, Thiele C, Castrillo JI, et al. (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14: 459–469.
[37]
Merico A, Galafassi S, Piskur J, Compagno C (2009) The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 9: 749–756.
[38]
van Dijken JP, van den Bosch E, Hermans JJ, de Miranda LR, Scheffers WA (1986) Alcoholic fermentation by ‘non-fermentative’ yeasts. Yeast 2: 123–127.
[39]
Lara AR, Taymaz-Nikerel H, Mashego MR, van Gulik WM, Heijnen JJ, et al. (2009) Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses. Biotechnol Bioeng 104: 1153–1161.
[40]
Ismond KP, Dolferus R, de Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132: 1292–1302.
[41]
Raleigh JA, Franko AJ, Koch CJ, Born JL (1985) Binding of misonidazole to hypoxic cells in monolayer and spheroid culture: evidence that a side-chain label is bound as efficiently as a ring label. Br J Cancer 51: 229–235.
[42]
Arteel GE, Thurman RG, Raleigh JA (1998) Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur J Biochem 253: 743–750.
[43]
Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, et al. (1998) Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58: 3765–3768.
[44]
Ljungkvist AS, Bussink J, Rijken PF, Raleigh JA, Denekamp J, et al. (2000) Changes in tumor hypoxia measured with a double hypoxic marker technique. Int J Radiat Oncol Biol Phys 48: 1529–1538.
[45]
Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC (1997) Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185: 207–218.
[46]
Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, et al. (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151–1156.
[47]
Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, et al. (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4: e1000046.
[48]
Rimland D, Hand WL (1980) The effect of ethanol on adherence and phagocytosis by rabbit alveolar macrophages. J Lab Clin Med 95: 918–926.
[49]
Goral J, Karavitis J, Kovacs EJ (2008) Exposure-dependent effects of ethanol on the innate immune system. Alcohol 42: 237–247.
[50]
Tamura DY, Moore EE, Partrick DA, Johnson JL, Offner PJ, et al. (1998) Clinically relevant concentrations of ethanol attenuate primed neutrophil bactericidal activity. J Trauma 44: 320–324.
[51]
Zuiable A, Wiener E, Wickramasinghe SN (1992) In vitro effects of ethanol on the phagocytic and microbial killing activities of normal human monocytes and monocyte-derived macrophages. Clin Lab Haematol 14: 137–147.
[52]
Szabo G, Mandrekar P (2009) A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 33: 220–232.
[53]
Pollock JD, Williams DA, Gifford MA, Li LL, Du X, et al. (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9: 202–209.
[54]
Balloy V, Huerre M, Latge JP, Chignard M (2005) Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect Immun 73: 494–503.
[55]
Brock M, Jouvion G, Droin-Bergere S, Dussurget O, Nicola MA, et al. (2008) Bioluminescent Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo monitoring of invasive aspergillosis. Appl Environ Microbiol 74: 7023–7035.
[56]
Ibrahim-Granet O, Jouvion G, Hohl TM, Droin-Bergere S, Philippart F, et al. (2010) In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis. BMC Microbiol 10: 105.
[57]
Raleigh JA, Chou SC, Bono EL, Thrall DE, Varia MA (2001) Semiquantitative immunohistochemical analysis for hypoxia in human tumors. Int J Radiat Oncol Biol Phys 49: 569–574.
[58]
Raleigh JA, Chou SC, Calkins-Adams DP, Ballenger CA, Novotny DB, et al. (2000) A clinical study of hypoxia and metallothionein protein expression in squamous cell carcinomas. Clin Cancer Res 6: 855–862.
[59]
Kizaka-Kondoh S, Konse-Nagasawa H (2009) Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci 100: 1366–1373.
[60]
Ben-Ami R, Lewis RE, Leventakos K, Kontoyiannis DP (2009) Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood 114: 5393–5399.
[61]
Lockington RA, Borlace GN, Kelly JM (1997) Pyruvate decarboxylase and anaerobic survival in Aspergillus nidulans. Gene 191: 61–67.
[62]
Kelly JM, Drysdale MR, Sealy-Lewis HM, Jones IG, Lockington RA (1990) Alcohol dehydrogenase III in Aspergillus nidulans is anaerobically induced and post-transcriptionally regulated. Mol Gen Genet 222: 323–328.
[63]
Mehrad B, Wiekowski M, Morrison BE, Chen SC, Coronel EC, et al. (2002) Transient lung-specific expression of the chemokine KC improves outcome in invasive aspergillosis. Am J Respir Crit Care Med 166: 1263–1268.
[64]
Zhang P, Nelson S, Summer WR, Spitzer JA (1997) Acute ethanol intoxication suppresses the pulmonary inflammatory response in rats challenged with intrapulmonary endotoxin. Alcohol Clin Exp Res 21: 773–778.
[65]
Brown LA, Harris FL, Bechara R, Guidot DM (2001) Effect of chronic ethanol ingestion on alveolar type II cell: glutathione and inflammatory mediator-induced apoptosis. Alcohol Clin Exp Res 25: 1078–1085.
[66]
Brown LA, Harris FL, Guidot DM (2001) Chronic ethanol ingestion potentiates TNF-alpha-mediated oxidative stress and apoptosis in rat type II cells. Am J Physiol Lung Cell Mol Physiol 281: L377–386.
[67]
Guidot DM, Modelska K, Lois M, Jain L, Moss IM, et al. (2000) Ethanol ingestion via glutathione depletion impairs alveolar epithelial barrier function in rats. Am J Physiol Lung Cell Mol Physiol 279: L127–135.
[68]
Holguin F, Moss I, Brown LA, Guidot DM (1998) Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats. J Clin Invest 101: 761–768.
[69]
Messingham KA, Faunce DE, Kovacs EJ (2002) Alcohol, injury, and cellular immunity. Alcohol 28: 137–149.
[70]
Nelson S, Kolls JK (2002) Alcohol, host defence and society. Nat Rev Immunol 2: 205–209.
[71]
Zhang P, Bagby GJ, Happel KI, Summer WR, Nelson S (2002) Pulmonary host defenses and alcohol. Front Biosci 7: d1314–1330.
[72]
Nelson S, Bagby GJ, Bainton BG, Summer WR (1989) The effects of acute and chronic alcoholism on tumor necrosis factor and the inflammatory response. J Infect Dis 160: 422–429.
[73]
Himmelreich U, Dzendrowskyj TE, Allen C, Dowd S, Malik R, et al. (2001) Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study. Radiology 220: 122–128.
[74]
Willger SD, Grahl N, Cramer RA Jr (2009) Aspergillus fumigatus metabolism: clues to mechanisms of in vivo fungal growth and virulence. Med Mycol 47: Suppl 1S72–79.
[75]
d'Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30: 76–82.
[76]
D'Enfert C, Diaquin M, Delit A, Wuscher N, Debeaupuis JP, et al. (1996) Attenuated virulence of uridine-uracil auxotrophs of Aspergillus fumigatus. Infect Immun 64: 4401–4405.
[77]
Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591–600.
[78]
McCluskey K, Wiest A, Plamann M (2010) The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J Biosci 35: 119–126.
[79]
Silar P (1995) Two new easy to use vectors for transformation. Fungal Genet Newsl 42: 73.
[80]
Cramer RA, Lawrence CB (2003) Cloning of a gene encoding an Alt a 1 isoallergen differentially expressed by the necrotrophic fungus Alternaria brassicicola during Arabidopsis infection. Appl Environ Microbiol 69: 2361–2364.
[81]
Steinbach WJ, Benjamin DK Jr, Trasi SA, Miller JL, Schell WA, et al. (2004) Value of an inhalational model of invasive aspergillosis. Med Mycol 42: 417–425.
[82]
Li H, Barker BM, Grahl N, Puttikamonkul S, Bell JD, et al. (2011) The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryot Cell 10: 174–186.
[83]
Hohl TM, Feldmesser M, Perlin DS, Pamer EG (2008) Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis 198: 176–185.