West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.
References
[1]
Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: S98–109.
[2]
Rappole JH, Derrickson SR, Hubalek Z (2000) Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg Infect Dis 6: 319–328.
[3]
Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100–103.
[4]
site PAHOw (2007) Number of reported cases of dengue and dengue hemorrhagic fever (DHF) in the Americas, by country: figures for 2007.
[5]
Blair CD, Adelman ZN, Olson KE (2000) Molecular strategies for interrupting arthropod-borne virus transmission by mosquitoes. Clin Microbiol Rev 13: 651–661.
[6]
Bae HG, Drosten C, Emmerich P, Colebunders R, Hantson P, et al. (2005) Analysis of two imported cases of yellow fever infection from Ivory Coast and The Gambia to Germany and Belgium. J Clin Virol 33: 274–280.
[7]
Tomori O (2004) Yellow fever: the recurring plague. Crit Rev Clin Lab Sci 41: 391–427.
[8]
Monath TP (2006) Yellow fever as an endemic/epidemic disease and priorities for vaccination. Bull Soc Pathol Exot 99: 341–347.
[9]
Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 106: 17841–17846.
[10]
Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098.
[11]
Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, et al. (2009) Discovery of insect and human dengue virus host factors. Nature 458: 1047–1050.
[12]
Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, et al. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330: 88–90.
[13]
Cheng G, Cox J, Wang P, Krishnan MN, Dai J, et al. (2010) A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142: 714–725.
[14]
Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black Wt, et al. (2005) Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg 72: 631–637.
[15]
Baron OL, Ursic-Bedoya RJ, Lowenberger CA, Ocampo CB Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus. J Insect Sci 10: 41.
[16]
Smartt CT, Richards SL, Anderson SL, Erickson JS (2009) West Nile virus infection alters midgut gene expression in Culex pipiens quinquefasciatus Say (Diptera: Culicidae). Am J Trop Med Hyg 81: 258–263.
[17]
Bennett KE, Flick D, Fleming KH, Jochim R, Beaty BJ, et al. (2005) Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 170: 185–194.
[18]
Sim S, Dimopoulos G (2010) Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One 5: e10678.
[19]
Brackney DE, Foy BD, Olson KE (2008) The effects of midgut serine proteases on dengue virus type 2 infectivity of Aedes aegypti. Am J Trop Med Hyg 79: 267–274.
[20]
Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371: 500–509.
[21]
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, et al. (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 1718–1723.
[22]
Vanlandingham DL, McGee CE, Klinger KA, Vessey N, Fredregillo C, et al. (2007) Relative susceptibilties of South Texas mosquitoes to infection with West Nile virus. Am J Trop Med Hyg 77: 925–928.
Gaunt MW, Sall AA, de Lamballerie X, Falconar AK, Dzhivanian TI, et al. (2001) Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82: 1867–1876.
[25]
Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, et al. (2005) Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 35: 1293–1307.
[26]
Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, et al. (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10: 1366–1373.
[27]
Isoe J, Kunz S, Manhart C, Wells MA, Miesfeld RL (2007) Regulated expression of microinjected DNA in adult Aedes aegypti mosquitoes. Insect Mol Biol 16: 83–92.
[28]
Higgs S, Snow K, Gould EA (2004) The potential for West Nile virus to establish outside of its natural range: a consideration of potential mosquito vectors in the United Kingdom. Trans R Soc Trop Med Hyg 98: 82–87.
[29]
Hubalek Z, Halouzka J (1999) West Nile fever--a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5: 643–650.
[30]
Dubrovsky EB, Dubrovskaya VA, Bilderback AL, Berger EM (2000) The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev Biol 224: 486–495.
[31]
Wei H, Zhou MM (2010) Viral-encoded enzymes that target host chromatin functions. Biochim Biophys Acta 1799: 296–301.
[32]
Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW, et al. (2004) During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol 78: 10178–10186.
[33]
Peng Z, Xu W, James AA, Lam H, Sun D, et al. (2001) Expression, purification, characterization and clinical relevance of rAed a 1--a 68-kDa recombinant mosquito Aedes aegypti salivary allergen. Int Immunol 13: 1445–1452.
[34]
Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, et al. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 11: 45.
[35]
Arnot CJ, Gay NJ, Gangloff M (9509) Molecular mechanism that induces activation of Spatzle, the ligand for the Drosophila Toll receptor. J Biol Chem 285: 19502–19509.
[36]
Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, et al. (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455: 242–245.
[37]
Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
[38]
Xu WW, Carter CJ Parallel multiplicity and error discovery rate (EDR) in microarray experiments. BMC Bioinformatics 11: 465.
[39]
Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57.
[40]
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.