[1] | Murray HW, Masur H, Keithly JS (1982) Cell-mediated immune response in experimental visceral Leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine-generating capacity. J Immunol 129: 344–350.
|
[2] | Belosevic M, Finbloom DS, Van der Meide PH, Slayter MV, Nacy CA (1989) Administration of monoclonal anti–IFN-gamma antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol 143: 266–274.
|
[3] | Nandan D, Reiner NE (1995) Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infect Immun 63: 4495–4500.
|
[4] | Hailu A, Van der Poll T, Berhe N, Kager PA (2004) Elevated plasma levels of interferon (IFN)-gamma, IFN-gamma inducing cytokines, and IFN-gamma inducible CXC chemokines in visceral Leishmaniasis. Am J Trop Med Hyg 71: 561–567.
|
[5] | Ansari NA, Saluja S, Salotra P (2006) Elevated levels of interferon-gamma, interleukin-10, and interleukin-6 during active disease in Indian kala azar. Clin Immunol 119: 339–345.
|
[6] | Caldas A, Favali C, Aquino D, Vinhas V, Van Weyenbergh J, et al. (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral Leishmaniasis: implications in the pathogenesis. BMC Infect Dis 5: 113–121.
|
[7] | De Medeiros IM, Castelo A, Salom?o R (1998) Presence of circulating levels of interferon-gamma, interleukin-10 and tumor necrosis factor-alpha in patients with visceral Leishmaniasis. Rev Inst Med Trop Sao Paulo 40: 31–34.
|
[8] | Karp CL, El-Safi SH, Wynn TA, Satti MM, Kordofani AM, et al. (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest 91: 1644–1648.
|
[9] | Nylén S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral Leishmaniasis. J Exp Med 204: 805–817.
|
[10] | Reiner NE, Ng W, Ma T, McMaster WR (1988) Kinetics of gamma interferon binding and induction of major histocompatibility complex class II mRNA in Leishmania-infected macrophages. Proc Natl Acad Sci U S A 85: 4330–4334.
|
[11] | Ray M, Gam AA, Boykins RA, Kenney RT (2000) Inhibition of interferon-gamma signaling by Leishmania donovani. J Infect Dis 181: 1121–1128.
|
[12] | Darnell JE (1997) STATs and gene regulation. Science 277: 1630–1635.
|
[13] | Kumar CS, Mariano TM, Noe M, Deshpande AK, Rose PM, et al. (1988) Expression of the murine interferon gamma receptor in Xenopus laevis oocytes. J Biol Chem 263: 13493–13496.
|
[14] | Marchetti M, Monier MN, Fradagrada A, Mitchell K, Baychelier F, et al. (2006) Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol Biol Cell 17: 2896–2909.
|
[15] | Sehgal PB, Guo GG, Shah M, Kumar V, Patel K (2002) Cytokine signaling: STATS in plasma membrane rafts. J Biol Chem 277: 12067–12074.
|
[16] | Takaoka A, Mitani Y, Suemori H, Sato M, Yokochi T, et al. (2000) Cross talk between interferon-gamma and -alpha/beta signaling components in caveolar membrane domains. Science 288: 2357–2360.
|
[17] | Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21: 457–481.
|
[18] | Gimpl G (2010) Cholesterol-protein interaction: methods and cholesterol reporter molecules. Subcell Biochem 51: 1–45.
|
[19] | Brannigan G, Hénin J, Law R, Eckenhoff R, Klein ML (4423) (2008) Embedded cholesterol in the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 105: 14418–14423.
|
[20] | Gimpl G, Fahrenholz F (2002) Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta 1564: 384–392.
|
[21] | Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663: 188–200.
|
[22] | Chakraborty D, Banerjee S, Sen A, Banerjee KK, Das P, et al. (2005) Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts. J Immunol 175: 3214–3224.
|
[23] | Banerjee S, Ghosh J, Sen S, Guha R, Dhar R, et al. (2009) Designing therapies against experimental visceral Leishmaniasis by modulating the membrane fluidity of antigen-presenting cells. Infect Immun 77: 2330–2342.
|
[24] | Perez-Guzman C, Vargas MH, Quinonez F, Bazavilvazo N, Aguilar A (2005) A cholesterol-rich diet accelerates bacteriological sterilization in pulmonary tuberculosis. Chest 127: 643–651.
|
[25] | Elias ER, Irons MB, Hurley AD, Tint GS, Salen G (1997) Clinical effects of cholesterol supplementation in six patients with the Smith-Lemli-Opitz syndrome (SLOS). Am J Med Genet 68: 305–310.
|
[26] | Ghosh J, Lal CS, Pandey K, Das VNR, Das P, et al. (2011) Human visceral Leishmaniasis: decrease in serum cholesterol as a function of splenic parasite load Annals of Tropical Medicine & Parasitology 105: 267–271.
|
[27] | Dogra N, Warburton C, McMaster WR (2007) Leishmania major abrogates gamma interferon-induced gene expression in human macrophages from a global perspective. Infect Immun 75: 3506–3515.
|
[28] | Reiner NE, Ng W, Wilson CB, McMaster WR, Burchett SK (1990) Modulation of in vitro monocyte cytokine responses to Leishmania donovani. Interferon-gamma prevents parasite-induced inhibition of interleukin 1 production and primes monocytes to respond to Leishmania by producing both tumor necrosis factor-alpha and interleukin. J Clin Invest 85: 1914–1924.
|
[29] | Wilson KC, Finbloom DS (1992) Interferon gamma rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc gamma receptor. Proc Natl Acad Sci U S A 89: 11964–11968.
|
[30] | Greenlund AC, Farrar MA, Viviano BL, Schreiber RD (1994) Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J 13: 1591–1600.
|
[31] | Bach EA, Tanner JW, Marsters S, Ashkenazi A, Aguet M, et al. (1996) Ligand-induced assembly and activation of the gamma interferon receptor in intact cells. Mol Cell Biol 16: 3214–3221.
|
[32] | Sakatsume M, Igarashi K, Winestock KD, Garotta G, Larner AC, et al. (1995) The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J Biol Chem 270: 17528–17534.
|
[33] | Kotenko SV, Izotova LS, Pollack BP, Mariano TM, Donnelly RJ, et al. (1995) Interaction between the components of the interferon gamma receptor complex. J Biol Chem 270: 20915–20921.
|
[34] | Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103: 211–225.
|
[35] | Yamaoka K, Saharinen P, Pesu M, Holt VE , Silvennoinen O, et al. (2004) The Janus kinases (Jaks). Genome Biol 5: 253.
|
[36] | Mizuguchi R, Hatakeyama M (1998) Conditional activation of Janus kinase (JAK) confers factor independence upon interleukin-3-dependent cells. Essential role of Ras in JAK-triggered mitogenesis. J Biol Chem 273: 32297–32303.
|
[37] | Kossiakoff AA, De Vos AM (1998) Structural basis for cytokine hormone-receptor recognition and receptor activation. Adv Protein Chem 52: 67–108.
|
[38] | Müller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, et al. (1993) The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 366: 129–135.
|
[39] | Watling D, Guschin D, Müller M, Silvennoinen O, Witthuhn BA, et al. (1993) Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 366: 166–170.
|
[40] | Walter MR, Windsor WT, Nagabhushan TL, Lundell DJ, Lunn CA, et al. (1995) Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature 376: 230–235.
|
[41] | Thiel DJ, le Du MH, Walter RL, D'Arcy A, Chène C, et al. (2000) Observation of an unexpected third receptor molecule in the crystal structure of human interferon-gamma receptor complex. Structure 8: 927–936.
|
[42] | Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47: 819–846.
|
[43] | Cheng PC, Dykstra ML, Mitchell RN, Pierce SK (1999) A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 190: 1549–1560.
|
[44] | Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, et al. (1998) Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 17: 5334–5348.
|
[45] | Janes PW, Ley SC, Magee AI, Kabouridis PS (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12: 23–34.
|
[46] | Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929–942.
|
[47] | Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.
|
[48] | Petkova DH, Momchilova-Pankova AB, Koumanov KS (1987) Effect of liver plasma membrane fluidity on endogenous phospholipase A2 activity. Biochimie 69: 1251–1255.
|
[49] | Van der Goot FG, Harder T (2001) Raft membrane domains: from a liquid ordered membrane phase to a site of pathogen attack. Semin Immunol 13: 89–97.
|
[50] | Kaneshiro ES, Gottlieb M, Dwyer DM (1982) Cell surface origin of antigens shed by Leishmania donovani during growth in axenic culture. Infect Immun 37: 558–567.
|
[51] | Denny PW, Field MC, Smith DF (2001) GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett 491: 148–153.
|
[52] | Winberg ME, Holm A, S?rndahl E, Vinet AF, Descoteaux A, et al. (2009) Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts. Microbes Infect 2: 215–222.
|
[53] | Dermine JF, Scianimanico S, Privé C, Descoteaux A, Desjardins M (2000) Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol 2: 115–126.
|
[54] | Rasmusson BJ, Flanagan TD, Turco SJ, Epand RM, Petersen NO (1998) Fusion of Sendai virus and individual host cells and inhibition of fusion by lipophosphoglycan measured with image correlation spectroscopy. Biochim Biophys Acta 1404: 338–352.
|
[55] | Nandan D, Reiner NE (1995) Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infect Immun 63: 4495–4500.
|
[56] | Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45: 279–294.
|
[57] | Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139: 4991–4997.
|
[58] | Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, et al. (2005) Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 19: 588–594.
|
[59] | Fountoulakis M, Zulauf M, Lustig A, Garotta G (1992) Stoichiometry of interaction between interferon gamma and its receptor. Eur J Biochem 15: 781–787.
|
[60] | Greenlund AC, Schreiber RD, Goeddel DV, Pennica D (1993) Interferon-gamma induces receptor dimerization in solution and on cells. J. Biol Chem 268: 18103–18110.
|
[61] | Bach EA, Szabo SJ, Dighe AS, Ashkenazi A, Aguet M, et al. (1995) Ligand-induced autoregulation of IFN-gamma receptor beta chain expression in T helper cell subsets. Science 270: 1215–1218.
|
[62] | Marsters SA, Pennica D, Bach E, Schreiber RD, Ashkenazi A (1995) Interferon gamma signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain. Proc Natl Acad Sci U S A 92: 5401–5405.
|
[63] | Vrljic M, Nishimura SY, Moerner WE, McConnell HM (2005) Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J 88: 334–347.
|
[64] | Bi K, Tanaka Y, Coudronniere N, Sugie K, Hong S, et al. (2001) Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol Jun; 2: 556–63.
|
[65] | Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843–849.
|
[66] | Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929–942.
|
[67] | Bograh A, Carpentier R, Tajmir-Riahi HA (1999) The effect of cholesterol on the solution structure of proteins of Photosystem II. Protein secondary structure and photosynthetic oxygen evolution. J Colloid Interface Sci 210: 118–122.
|
[68] | Forget G, Gregory DJ, Olivier M (2005) Proteasome-mediated degradation of STAT1alpha following infection of macrophages with Leishmania donovani. J Biol Chem 280: 30542–30549.
|
[69] | Dasgupta B, Roychoudhury K, Ganguly S, Kumar Sinha P, Vimal S, et al. (2003) AntiLeishmanial drugs cause up-regulation of interferon-gamma receptor 1, not only in the monocytes of visceral Leishmaniasis cases but also in cultured THP1 cells. Ann Trop Med Parasitol 97: 245–257.
|
[70] | Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 255: 9344–9352.
|
[71] | Chobanian AV, Hollander W (1962) Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J Clin Invest 41: 1732–7.
|
[72] | Rub A, Dey R, Jadhav M, Kamat R, Chakkaramakkil S, et al. (2009) Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat Immunol 10: 273–280.
|
[73] | Shrivastava S, Chattopadhyay A (2007) Influence of cholesterol and ergosterol on membrane dynamics using fluorescent probes. Biochem Biophys Res Commun 356: 705–710.
|
[74] | Pucadyil TJ, Tewary P, Madhubala R, Chattopadhyay A (2004) Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Mol Biochem Parasitol 133: 145–52.
|
[75] | Greenhalgh CJ, Hilton DJ (2001) Negative regulation of cytokine signaling. J Leukocyte Biol 70: 348–356.
|
[76] | Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 29: 3737–3744.
|
[77] | Bousquet C, Susini C, Melmed S (1999) Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J Clin Invest 104: 1277–1285.
|
[78] | Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, et al. (2009) Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2: ra58.
|
[79] | Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, et al. (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123: 842–52.
|
[80] | Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166: 1912–1920.
|
[81] | Ito S, Ansari P, Sakatsume M, Dickensheets H, Vazquez N, et al. (1999) Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93: 1456–63.
|
[82] | Saha B, Roy HN, Pakrashi A, Chakrabarti RN, Roy S (1991) Immunobiological studies on experimental visceral Leishmaniasis. I. Changes in lymphoid organs and their possible role in pathogenesis. Eur J Immunol 21: 577–581.
|
[83] | Mukhopadhyay S, Sen P, Bhattacharyya S, Majumdar S, Roy S (1999) Immunoprophylaxis and immunotherapy against experimental visceral Leishmaniasis. Vaccine 17: 291–300.
|
[84] | Green LC, Wanger DA, Glogowski J, Skipper PL, Wishnok JS, et al. (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126: 131–138.
|
[85] | Olivier M, Romero-Gallo BJ, Matte C, Blanchette J, Posner BI, et al. (1998) Modulation of interferon-gamma-induced macrophage activation by phosphotyrosine phosphatases inhibition. Effect on murine Leishmaniasis progression. J Biol Chem 273: 13944–13949.
|
[86] | Green MM, Larkin J , Subramaniam PS, Szente BE, Johnson HM (1998) Human IFN gamma receptor cytoplasmic domain: expression and interaction with HuIFN gamma. Biochem Biophys Res Commun 243: 170–176.
|
[87] | Szente BE, Subramaniam PS, Johnson HM (1995) Identification of IFN-gamma receptor binding sites for JAK2 and enhancement of binding by IFN-gamma and its C-terminal peptide IFN-gamma (95-133). J Immunol 155: 5617–5622.
|
[88] | Z?llner C, Mousa SA, Fischer O, Rittner HL, Shaqura M, et al. (2008) Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. J Clin Invest 118: 1065–1073.
|
[89] | Gent J, van Kerkhof P, Roza M, Bu G, Strous GJ (2002) Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci U S A 99: 9858–9863.
|
[90] | Anderson P, Yip YK, Vilcek J (1983) Human interferon-gamma is internalized and degraded by cultured fibroblasts. J Biol Chem 258: 6497–6502.
|
[91] | Liu H, Rhodes M, Wiest DL, Vignali DA (2000) On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity 13: 665–675.
|
[92] | Lacalle RA, Mira E, Gomez-Mouton C, Jimenez-Baranda S, Martinez-A C, et al. (2002) Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. J Cell Biol 157: 277–289.
|
[93] | El Kasmi KC, Holst J, Coffre M, Mielke L, de Pauw A, et al. (2006) General nature of the STAT3-activated anti-inflammatory response. J Immunol 177: 7880–7888.
|
[94] | Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ (1997) An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem 272: 1226–1230.
|
[95] | Plevy SE, Gemberling JH, Hsu S, Dorner AJ, Smale ST (1997) Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol Cell Biol 17: 4572–4588.
|
[96] | Giraud MN, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM (1999) Interaction of Indomethacin and Naproxen with gastric surface-active phospholipids: A possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs) Biochemical Pharmacology 57: 247–254.
|
[97] | Lee BC, Zuckermann RN, Dill KA (2005) Folding a nonbiological polymer into a compact multihelical structure. J Am Chem Soc 127: 10999–11009.
|
[98] | Riven I, Kalmanzon E, Segev L, Reuveny E (2003) Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38: 225–235.
|
[99] | Nagamatsu S, Kornhauser JM, Burant CF, Seino S, Mayo KE, et al. (1992) Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J Biol Chem 267: 467–472.
|
[100] | Okada S, Yamada E, Saito T, Ohshima K, Hashimoto K, et al. (2008) CDK5-dependent phosphorylation of the Rho family GTPase TC10(alpha) regulates insulin-stimulated GLUT4 translocation. J Biol Chem 283: 35455–35463.
|
[101] | Demandolx D, Davoust J (1997) Multicolour analysis and local image correlation in confocal microscopy. J Microsc 185: 21–36.
|
[102] | Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169: 375–382.
|
[103] | Cunningham O, Andolfo A, Santovito ML, Iuzzolino L, Blasi F, et al. (2003) Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J 22: 5994–6003.
|
[104] | Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C (2003) Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18: 655–664.
|
[105] | Shinitzky M, Inbar M (1974) Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J Mol Biol 85: 603–615.
|
[106] | Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515: 367–394.
|
[107] | Chen X, Resh MD (2002) Cholesterol depletion from the plasma membrane triggers ligand-independent activation of the epidermal growth factor receptor. J Biol Chem 277: 49631–49637.
|
[108] | Martin I, Turco SJ, Epand RM, Ruysschaert JM (1998) Lipophosphoglycan of Leishmania donovani inhibits lipid vesicle fusion induced by the N-terminal extremity of viral fusogenic simian immunodeficiency virus protein. Eur J Biochem 258: 150–156.
|
[109] | Field GB, Noble RL (1990) Solid peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acid. Int J Pept Protein Res 35: 161–214.
|
[110] | Liu Z, Masuko S, Solakyildirim K, Pu D, Linhardt RJ, et al. (2010) Glycosaminoglycans of the porcine central nervous system. Biochemistry 49: 9839–9847.
|