The liver removes quickly the great bulk of virus circulating in blood, leaving only a small fraction to infect the host, in a manner characteristic of each virus. The scavenger cells of the liver sinusoids are implicated, but the mechanism is entirely unknown. Here we show, borrowing a mouse model of adenovirus clearance, that nearly all infused adenovirus is cleared by the liver sinusoidal endothelial cell (LSEC). Using refined immunofluorescence microscopy techniques for distinguishing macrophages and endothelial cells in fixed liver, and identifying virus by two distinct physicochemical methods, we localized adenovirus 1 minute after infusion mainly to the LSEC (~90%), finding ~10% with Kupffer cells (KC) and none with hepatocytes. Electron microscopy confirmed our results. In contrast with much prior work claiming the main scavenger to be the KC, our results locate the clearance mechanism to the LSEC and identify this cell as a key site of antiviral activity.
References
[1]
Mims CA (1959) The response of mice to large intravenous injections of ectromelia virus. I. The fate of injected virus. Br J Exp Pathol 40: 533–542.
[2]
Brunner KT, Hurez D, McCluskey RT, Benacerraf B (1960) Blood Clearance of P32-Labeled Vesicular Stomatitis and Newcastle Disease Viruses by the Reticuloendothelial System in Mice. J Immunol 85: 99–105.
[3]
Alemany R, Suzuki K, Curiel DT (2000) Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81: 2605–2609.
[4]
Worgall S, Wolff G, Falck-Pedersen E, Crystal RG (1997) Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 8: 37–44.
[5]
Zhang L, Dailey PJ, Gettie A, Blanchard J, Ho DD (2002) The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J Virol 76: 5271–5273.
[6]
Mims CA (1964) Aspects of the pathogenesis of virus diseases. Bacteriol Rev 28: 30–71.
[7]
Sack BK, Herzog RW (2009) Evading the immune response upon in vivo gene therapy with viral vectors. Curr Opin Mol Ther 11: 493–503.
[8]
Barry MA, Hofherr SE, Chen CY, Senac JS, Hillestad ML, Shashkova EV (2009) Systemic delivery of therapeutic viruses. Curr Opin Mol Ther 11: 411–420.
[9]
Haisma HJ, Boesjes M, Beerens AM, van der Strate BW, Curiel DT, Pluddemann A, Gordon S, Bellu AR (2009) Scavenger receptor A: a new route for adenovirus 5. Mol Pharm 6: 366–374.
[10]
Simon V, Ho DD (2003) HIV-1 dynamics in vivo: Implications for therapy. Nat Rev Microbiol 1: 181–190.
[11]
Smedsrod B, Pertoft H, Gustafson S, Laurent TC (1990) Scavenger functions of the liver endothelial cell. Biochem J 266: 313–327.
[12]
Elvevold K, Smedsrod B, Martinez I (2008) The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol 294: G391–G400.
[13]
Nakamura-Ishizu A, Morikawa S, Shimizu K, Ezaki T (2008) Characterization of sinusoidal endothelial cells of the liver and bone marrow using an intravital lectin injection method. J Mol Hist 39: 471–479.
[14]
Knolle PA, Germann T, Treichel U, Uhrig A, Schmitt E, et al. (1999) Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol 162: 1401–1407.
[15]
Huebert RC, Jagavelu K, Liebl AF, Huang BQ, Splinter PL, et al. (2010) Immortalized liver endothelial cells: a cell culture model for studies of motility and angiogenesis. Lab Invest 90: 1770–81.
[16]
Zellweger RM, Prestwood TR, Shresta S (2010) Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7: 128–139.
[17]
Pertoft H, Smedsrod B (1987) Separation and characterization of liver cells. In: Pretlow TG II, Pretlow TP, editors. Cell separation: Methods and selected applications. Orlando: Academic Press. pp. 1–24.
[18]
Aschoff L (1924) Reticuloendothelial System (Janeway Lecture, New York). Lectures on Pathology (delivered in the United States, 1924). New York: Paul B. Hoeber, Inc. pp. 1–33.
[19]
Van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, et al. (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46: 845–852.
[20]
Fawcett DW (1986) Bloom and Fawcett. A Textbook of Histology. Philadelphia: W.B.Saunders Company.
[21]
Nathanson N, Tyler KL (1997) Entry, dissemination, shedding, and transmission of viruses. In: Nathanson N, editor. Viral Pathogenesis. Lippincott Williams and Wilkins. pp. 13–32.
[22]
Stewart CC (1984) From the Editor. J Leuk Biol 35: front matter.
[23]
Kawai Y, Smedsrod B, Elvevold K, Wake K (1998) Uptake of lithium carmine by sinusoidal endothelial and Kupffer cells of the rat liver: new insights into the classical vital staining and the reticulo-endothelial system. Cell Tissue Res 292: 395–410.
[24]
Wake K, Kawai Y, Smedsrod B (2001) Re-evaluation of the reticulo-endothelial system. Ital J Anat Embryol 106: 261–269.
[25]
Muro H, Shirasawa H, Maeda M, Nakamura S (1987) Fc receptors of liver sinusoidal endothelium in normal rats and humans. Gastroenterology 93: 1078–1085.
[26]
Mousavi SA, Sporstol M, Fladeby C, Kjeken R, Barois N, et al. (2007) Receptor-Mediated Endocytosis of Immune Complexes in Rat Liver Sinusoidal Endothelial Cells Is Mediated by FcRIIb2. Hepatology 46: 871–884.
[27]
Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12: 575–625.
[28]
Clark KR, Liu X, McGrath JP, Johnson PR (1999) Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 10: 1031–1039.
[29]
Palmer DJ, Ng P (2004) Physical and infectious titers of helper-dependent adenoviral vectors: a method of direct comparison to the adenovirus reference material. Mol Ther 10: 792–798.
[30]
Vacha J (1975) Blood volume in inbred strain BALB/c, CBA/J and C57BL/10 mice determined by means of 59Fe-labelled red cells and 59Fe bound to transferrin. Physiol Bohemoslov 24: 113–119.
[31]
Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR, et al. (1998) Fluorescent virions: Dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gen Ther 9: 367–378.
[32]
Valentine RC, Pereira HG (1965) Antigens and structure of the adenovirus. J Mol Biol 13: 1–20.
[33]
Xie J, Chiang L, Contreras J, Wu K, Garner JA, et al. (2006) Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 80: 11833–11851.
[34]
Lyden TW, Anderson CL, Robinson JM (2002) The endothelium but not the syncytiotrophoblast of human placenta expresses caveolae. Placenta 23: 640–652.