全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

DOI: 10.1371/journal.ppat.1002244

Full-Text   Cite this paper   Add to My Lib

Abstract:

A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.

References

[1]  Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH (2002) Asthma: an epidemic of dysregulated immunity. Nat Immunol 3: 715–720.
[2]  Busse WW, Lemanske RF (2001) Asthma. New Engl J Med 344: 350–362.
[3]  Douwes J, Gibson P, Pekkanen J, Pearce N (2002) Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57: 643–648.
[4]  Gibson PG, Simpson JL, Saltos N (2001) Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119: 1329–1336.
[5]  Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ (1999) Non-eosinophilic corticosteroid unresponsive asthma. Lancet 353: 2213–2214.
[6]  Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, et al. (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Resp Crit Care 160: 1001–1008.
[7]  Godon P, Boulet LP, Malo JL, Cartier A, Lemiere C (2002) Assessment and evaluation of symptomatic steroid-naive asthmatics without sputum eosinophilia and their response to inhaled corticosteroids. Eur Respir J 20: 1364–1369.
[8]  Simpson JL, Scott R, Boyle MJ, Gibson PG (2006) Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology 11: 54–61.
[9]  Adcock IM, Ito K (2004) Steroid resistance in asthma: a major problem requiring novel solutions or a non-issue? Curr Opin Pharmacol 4: 257–262.
[10]  Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, et al. (2002) Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57: 875–879.
[11]  Berry M, Morgan A, Shaw DE, Parker D, Green R, et al. (2007) Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62: 1043–1049.
[12]  Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, et al. (2007) Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 62: 211–218.
[13]  Molet S, Hamid Q, Davoineb F, Nutku E, Tahaa R, et al. (2001) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108: 430–438.
[14]  Stefano AD, Caramori G, Gnemmi I, Contoli M, Vicari C, et al. (2009) T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 157: 316–324.
[15]  Bullens D, Truyen E, Coteur L, Dilissen E, Hellings P, et al. (2006) IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 7: 135–143.
[16]  Hansbro PM, Kaiko GE, Foster PS (2011) Cytokine/anti-cytokine therapy - novel treatments for asthma? Brit J Pharmacol 163: 81–95.
[17]  Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, et al. (2010) Th17 cells in autoimmune arthritis. Ann Rheum Dis 69: A69–A70.
[18]  Ji Y, Yiwei C, Xue Y, Di G, Lubing Z, et al. (2009) Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 60: 1472–1483.
[19]  Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, et al. (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukocyte Biol 56: 559–564.
[20]  Pellme S, Morgelin M, Tapper H, Mellqvist U-H, Dahlgren C, et al. (2006) Localization of human neutrophil interleukin-8 (CXCL-8) to organelle(s) distinct from the classical granules and secretory vesicles. J Leukocyte Biol 79: 564–573.
[21]  Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, et al. (2003) Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Resp Cell Mol 28: 42–50.
[22]  Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201: 233–240.
[23]  Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, et al. (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179: 7791–7799.
[24]  Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177: 4662–4669.
[25]  Roark CL, Simonian PL, Fontenot AP, Born WK, O'Brien RL (2008) γδ T cells: an important source of IL-17. Curr Opin Immunol 20: 353–357.
[26]  Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A (2003) IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 170: 2106–2112.
[27]  Song C, Luo L, Lei Z, Li B, Liang Z, et al. (2008) IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol 181: 6117–6124.
[28]  Zhou Q, Desta T, Fenton M, Graves DT, Amar S (2005) Cytokine profiling of macrophages exposed to Porphyromonas gingivalis, its lipopolysaccharide, or its FimA Protein. Infect Immun 73: 935–943.
[29]  Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, et al. (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194: 519–528.
[30]  Feinen B, Gaffen SL, Jerse AE, Russell MW (2009) IL-17 elicits a neutrophil-attractant response to Neisseria gonorrhoeae infection. J Immunol 182: 38.25.
[31]  Scurlock AM, O'Connell CM, Andrews CW, Foote IP, Darville TM (2009) Mucosal T-helper 17 responses to Chlamydia genital tract infection. J Allergy Clin Immun 123: S138–S138.
[32]  Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, et al. (2007) IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 9: 78–86.
[33]  Wood LG, Simpson JL, Hansbro PM, Gibson PG (2010) Potentially pathogenic bacteria cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and airway neutrophilia. Free Radical Res 44: 146–154.
[34]  Erwin AL, Smith AL (2007) Nontypeable Haemophilus influenzae: understanding virulence and commensal behaviour. Trends Microbiol 15: 355–362.
[35]  Murphy TF (2003) Respiratory infections caused by non-typeable Haemophilus influenzae. Curr Opin Infect Dis 16: 129–134.
[36]  Murphy TF, Brauer AL, Schiffmacher AT, Sethi S (2004) Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am J Resp Crit Care 170: 266–272.
[37]  Angrill J, Agusti C, de Celis R, Rano A, Gonzalez J, et al. (2002) Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax 57: 15–19.
[38]  Barnes PJ (2002) New treatments for COPD. Nat Rev Drug Discov 1: 437–446.
[39]  Wilson R (2000) Evidence of bacterial infection in acute exacerbations of chronic bronchitis. Semin Respir Infect 15: 208–215.
[40]  Look DC, Chin CL, Manzel LJ, Lehman EE, Humlicek AL, et al. (2006) Modulation of airway inflammation by Haemophilus influenzae isolates associated with chronic obstructive pulmonary disease exacerbation. Proc Am Thorac Soc 3: 482–483.
[41]  Seroogy CM, Gern JE (2005) The role of T regulatory cells in asthma. J Allergy Clin Immun 116: 996–999.
[42]  Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ (2006) Modulation of dendritic cell trafficking to and from the airways. J Immunol 176: 3578–3584.
[43]  Boyton RJ (2008) Bronchiectasis. Medicine 36: 315–320.
[44]  Wark PAB, Johnston SL, Moric I, Simpson JL, Hensley MJ, et al. (2001) Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 19: 68–75.
[45]  Samuel LF, William WB (2005) The role of rhinovirus in asthma exacerbations. J Allergy Clin Immun 116: 267–273.
[46]  Fahy JV, Kim KW, Liu J, Boushey HA (1995) Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immun 95: 843–852.
[47]  Horvat JC, Starkey MR, Kim RY, Beagley KW, Preston JA, et al. (2010) Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease. J Immunol 184: 4159–4169.
[48]  Cho YS, Kim TB, Lee TH, Moon KA, Lee J, et al. (2005) Chlamydia pneumoniae infection enhances cellular proliferation and reduces steroid responsiveness of human peripheral blood mononuclear cells via a tumor necrosis factor-alpha-dependent pathway. Clin Exp Allergy 35: 1625–1631.
[49]  Wang F, He XY, Baines KJ, Gunawardhana LP, Simpson JL, et al. (2011) Different inflammatory phenotypes in adults and children with acute asthma. Eur Respir J 38: 567–574.
[50]  Patel KK, Vicencio AG, Du Z, Tsirilakis K, Salva PS, et al. (2010) Infectious Chlamydia pneumoniae is associated with elevated interleukin-8 and airway neutrophilia in children with refractory asthma. Pediatr Infect Dis J 29: 1093–1098.
[51]  Preston JA, Thorburn AN, Starkey MR, Beckett EL, Horvat JC, et al. (2010) Streptococcus pneumoniae infection suppresses allergic airways disease by inducing regulatory T cells. Eur Respir J 37: 1–12.
[52]  Thorburn AN, O'Sullivan BJ, Ranjeny T, Kumar RK, Foster PS, et al. (2010) Pneumococcal conjugate vaccine-induced regulatory T cells suppress the development of allergic airways disease. Thorax 65: 1053–1060.
[53]  Dong L, Li H, Wang S, Li Y (2009) Different doses of lipopolysaccharides regulate the lung inflammation of asthmatic mice via TLR4 pathway in alveolar macrophages. J Asthma 46: 229–233.
[54]  Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, et al. (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196: 1645–1651.
[55]  Delayre-Orthez C, Becker J, de Blay F, Frossard N, Pons F (2005) Exposure to endotoxins during sensitization prevents further endotoxin-induced exacerbation of airway inflammation in a mouse model of allergic asthma. Int Arch Allergy Imm 138: 298–304.
[56]  Rodriguez D, Keller AC, Faquim-Mauro EL, de Macedo MS, Cunha FQ, et al. (2003) Bacterial lipopolysaccharide signaling through toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol 171: 1001–1008.
[57]  Kim Y-K, Oh S-Y, Jeon SG, Park H-W, Lee S-Y, et al. (2007) Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J Immunol 178: 5375–5382.
[58]  Li JJ, Wang W, Baines KJ, Bowden NA, Hansbro PM, et al. (2010) IL-27/IFN-γ induce MyD88-dependent steroid-resistant airway hyperresponsiveness by inhibiting glucocorticoid signaling in macrophages. J Immunol 185: 4401–4409.
[59]  Ingalls R, Rice P, Qureshi N, Takayama K, Lin J, et al. (1995) The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun 63: 3125–3130.
[60]  Kline JN, Kitagaki K, Businga TR, Jain VV (2002) Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am J Physiol Lung Cell Mol Physiol 283: L170–L179.
[61]  Fonseca DE, Kline JN (2009) Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Delivery Rev 61: 256–262.
[62]  Serebrisky D, Teper AA, Huang C-K, Lee S-Y, Zhang T-F, et al. (2000) CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B7.1/B7.2 expression in a murine model of asthma. J Immunol 165: 5906–5912.
[63]  Wakashin H, Hirose K, Maezawa Y, Kagami S-J, Suto A, et al. (2008) IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Resp Crit Care 178: 1023–1032.
[64]  Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, et al. (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203: 2715–2725.
[65]  Park SJ, Lee KS, Kim SR, Min KH, Choe YH, et al. (2009) Peroxisome proliferator-activated receptor γ agonist down-regulates IL-17 expression in a murine model of allergic airway inflammation. J Immunol 183: 3259–3267.
[66]  Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, et al. (2010) Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol 125: 222–230.
[67]  Horvat JC, Beagley KW, Wade MA, Preston JA, Hansbro NG, et al. (2007) Neonatal Chlamydial infection induces mixed T-cell responses that drive allergic airway disease. Am J Resp Crit Care 176: 556–564.
[68]  Preston JA, Essilfie A-T, Horvat JC, Wade MA, Beagley KW, et al. (2007) Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine 25: 8154–8162.
[69]  Horvat JC, Starkey MR, Kim RY, Phipps S, Gibson PG, et al. (2010) Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. J Allergy Clin Immunol 125: 617–625.e616.
[70]  Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, et al. (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206: 35–41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133