Infection with the trematode parasite Schistosoma mansoni results in distinct heterogeneity of disease severity both in humans and in mice. In the experimental mouse model, severe disease is characterized by pronounced hepatic egg-induced granulomatous inflammation mediated by CD4 Th17 cells, whereas mild disease is associated with reduced hepatic inflammation in a Th2-skewed cytokine environment. Even though the host’s genetic background significantly impacts the clinical outcome of schistosomiasis, specific gene(s) that contribute to disease severity remain elusive. We investigated the schistosome infection in wild-derived mice, which possess a more diverse gene pool than classically inbred mouse strains and thus makes them more likely to reveal novel mechanisms of immune regulation. We now show that inbred wild-derived MOLF mice develop severe hepatic inflammation with high levels of IL-17. Congenic mice with a MOLF locus in chromosome 6, designated Why1, revealed high pathology and enabled the identification of Irak2 as the pathogenic gene. Although IRAK-2 is classically associated with TLR signaling, adoptive transfer of CD4 T cells revealed that IRAK-2 mediates pathology in a CD4 T cell specific manner by promoting Th17 cell development through enhancement of IL-1β-induced activation of transcription factors RORγt and BATF. The use of wild-derived mice unravels IRAK-2 as a novel regulator of IL-1-induced pathogenic Th17 cells in schistosomiasis, which likely has wide-ranging implications for other chronic inflammatory and autoimmune diseases.
References
[1]
Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2: 499–511.
Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, et al. (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448: 1050–1053.
[4]
Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F (2007) On the subspecific origin of the laboratory mouse. Nat Genet 39: 1100–1107.
[5]
Guenet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19: 24–31.
[6]
Sancho-Shimizu V, Malo D (2006) Sequencing, expression, and functional analyses support the candidacy of Ncf2 in susceptibility to Salmonella typhimurium infection in wild-derived mice. J Immunol 176: 6954–6961.
[7]
Staelens J, Wielockx B, Puimege L, Van Roy F, Guenet JL, et al. (2002) Hyporesponsiveness of SPRET/Ei mice to lethal shock induced by tumor necrosis factor and implications for a TNF-based antitumor therapy. Proc Natl Acad Sci U S A 99: 9340–9345.
[8]
Gause WC, Urban JF Jr, Stadecker MJ (2003) The immune response to parasitic helminths: insights from murine models. Trends Immunol 24: 269–277.
[9]
Hernandez HJ, Wang Y, Tzellas N, Stadecker MJ (1997) Expression of class II, but not class I, major histocompatibility complex molecules is required for granuloma formation in infection with Schistosoma mansoni. Eur J Immunol 27: 1170–1176.
[10]
Bica I, Hamer DH, Stadecker MJ (2000) Hepatic schistosomiasis. Infect Dis Clin North Am 14: 583–604. viii.
[11]
Cheever AW, Duvall RH, Hallack TA Jr, Minker RG, Malley JD, et al. (1987) Variation of hepatic fibrosis and granuloma size among mouse strains infected with Schistosoma mansoni. Am J Trop Med Hyg 37: 85–97.
[12]
Rutitzky LI, Hernandez HJ, Stadecker MJ (2001) Th1-polarizing immunization with egg antigens correlates with severe exacerbation of immunopathology and death in schistosome infection. Proc Natl Acad Sci U S A 98: 13243–13248.
[13]
Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201: 233–240.
[14]
Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, et al. (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116: 1310–1316.
[15]
Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28: 454–467.
[16]
Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171: 6173–6177.
[17]
Ivanov , McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, et al. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126: 1121–1133.
[18]
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238.
[19]
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189.
[20]
Zhou L, Ivanov , Spolski R, Min R, Shenderov K, et al. (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8: 967–974.
[21]
Korn T, Bettelli E, Gao W, Awasthi A, Jager A, et al. (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487.
[22]
Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, et al. (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448: 480–483.
[23]
Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8: 337–348.
[24]
Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203: 1685–1691.
[25]
Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27: 519–550.
[26]
Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, et al. (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30: 576–587.
[27]
Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, et al. (2009) IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A 106: 7119–7124.
[28]
Shainheit MG, Smith PM, Bazzone LE, Wang AC, Rutitzky LI, et al. (2008) Dendritic cell IL-23 and IL-1 production in response to schistosome eggs induces Th17 cells in a mouse strain prone to severe immunopathology. J Immunol 181: 8559–8567.
[29]
Smith PM, Shainheit MG, Bazzone LE, Rutitzky LI, Poltorak A, et al. (2009) Genetic control of severe egg-induced immunopathology and IL-17 production in murine schistosomiasis. J Immunol 183: 3317–3323.
[30]
Rutitzky LI, Bazzone L, Shainheit MG, Joyce-Shaikh B, Cua DJ, et al. (2008) IL-23 Is Required for the Development of Severe Egg-Induced Immunopathology in Schistosomiasis and for Lesional Expression of IL-17. J Immunol 180: 2486–2495.
[31]
Conner JR, Smirnova , Poltorak A (2009) A mutation in Irak2c identifies IRAK-2 as a central component of the TLR regulatory network of wild-derived mice. J Exp Med 206: 1615–1631.
[32]
Conner JR, Smirnova , Poltorak A (2008) Forward genetic analysis of Toll-like receptor responses in wild-derived mice reveals a novel antiinflammatory role for IRAK1BP1. J Exp Med 205: 305–314.
[33]
Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421.
[34]
Powolny-Budnicka I, Riemann M, Tanzer S, Schmid RM, Hehlgans T, et al. (2011) RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in gammadelta T cells. Immunity 34: 364–374.
[35]
Liu XK, Lin X, Gaffen SL (2004) Crucial role for nuclear factor of activated T cells in T cell receptor-mediated regulation of human interleukin-17. J Biol Chem 279: 52762–52771.
[36]
Rutitzky LI, Lopes da Rosa JR, Stadecker MJ (2005) Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17. J Immunol 175: 3920–3926.
[37]
Rutitzky LI, Smith PM, Stadecker MJ (2009) T-bet protects against exacerbation of schistosome egg-induced immunopathology by regulating Th17-mediated inflammation. Eur J Immunol 39: 2470–2481.
[38]
Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, et al. (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467: 967–971.
[39]
Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465: 885–90.
[40]
Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612–1615.
[41]
Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278: 1910–1914.
[42]
McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, et al. (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8: 1390–1397.
[43]
Parham C, Chirica M, Timans J, Vaisberg E, Travis M, et al. (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168: 5699–5708.
[44]
Schraml BU, Hildner K, Ise W, Lee WL, Smith WA, et al. (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460: 405–409.
[45]
Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C, et al. (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8: 958–966.
[46]
Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, et al. (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453: 65–71.
[47]
Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, et al. (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453: 106–109.
[48]
Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, et al. (2008) Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9: 684–691.
[49]
Wan Y, Xiao H, Affolter J, Kim TW, Bulek K, et al. (2009) Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J Biol Chem 284: 10367–10375.
[50]
Rutitzky LI, Hernandez HJ, Yim YS, Ricklan DE, Finger E, et al. (2005) Enhanced egg-induced immunopathology correlates with high IFN-gamma in murine schistosomiasis: identification of two epistatic genetic intervals. J Immunol 174: 435–440.
[51]
Abel L, Dessein AJ (1997) The impact of host genetics on susceptibility to human infectious diseases. Curr Opin Immunol 9: 509–516.
[52]
Marquet S, Abel L, Hillaire D, Dessein H, Kalil J, et al. (1996) Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Nat Genet 14: 181–184.
[53]
Zinn-Justin A, Marquet S, Hillaire D, Dessein A, Abel L (2001) Genome search for additional human loci controlling infection levels by Schistosoma mansoni. Am J Trop Med Hyg 65: 754–758.
[54]
Hardy MP, O'Neill LA (2004) The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem 279: 27699–27708.
[55]
Janssens S, Beyaert R (2003) Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 11: 293–302.
[56]
Suzuki N, Suzuki S, Millar DG, Unno M, Hara H, et al. (2006) A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311: 1927–1932.
[57]
Kawagoe T, Sato S, Jung A, Yamamoto M, Matsui K, et al. (2007) Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J Exp Med 204: 1013–1024.
[58]
Staschke KA, Dong S, Saha J, Zhao J, Brooks NA, et al. (2009) IRAK4 kinase activity is required for Th17 differentiation and Th17-mediated disease. J Immunol 183: 568–577.
[59]
Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27: 693–733.
[60]
Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, et al. (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182: 5904–5908.
[61]
Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27: 485–517.
[62]
Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19: 281–286.
[63]
Martinez GJ, Dong C (2009) BATF: bringing (in) another Th17-regulating factor. J Mol Cell Biol 1: 66–68.
[64]
Huber M, Brustle A, Reinhard K, Guralnik A, Walter G, et al. (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc Natl Acad Sci U S A 105: 20846–20851.
[65]
Veldhoen M, Hirota K, Christensen J, O'Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206: 43–49.
[66]
Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, et al. (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950–957.
[67]
Boros DL, Warren KS (1970) Delayed hypersensitivity-type granuloma formation and dermal reaction induced and elicited by a soluble factor isolated from Schistosoma mansoni eggs. J Exp Med 132: 488–507.
[68]
Bazzone LE, Smith PM, Rutitzky LI, Shainheit MG, Urban JF, et al. (2008) Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis. Infect Immun 76: 5164–5172.
[69]
Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, et al. (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116: 1317–1326.