Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.
References
[1]
Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, et al. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279–281.
[2]
Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263–273.
[3]
Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385–407.
[4]
Wolfe AJ, Visick KL, editors. (2010) The second messenger cyclic di-GMP. Washington D.C.: ASM Press.
[5]
Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203: 11–21.
[6]
Bobrov AG, Kirillina O, Perry RD (2005) The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247: 123–130.
[7]
Christen M, Christen B, Folcher M, Schauerte A, Jenal U (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280: 30829–30837.
[8]
Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187: 1792–1798.
[9]
Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187: 4774–4781.
[10]
Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, et al. (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103: 6712–6717.
[11]
Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, et al. (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18: 715–727.
[12]
Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5: 35.
[13]
Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57: 629–639.
[14]
Newell PD, Monds RD, O'Toole GA (2009) LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106: 3461–3466.
[15]
Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, et al. (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141: 107–116.
[16]
Fang X, Gomelsky M (2010) A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76: 1295–1305.
[17]
Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38: 128–139.
[18]
Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123–1134.
Gomelsky M (2011) cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol 79: 562–565.
[21]
Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61: 131–148.
[22]
Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10: 17–23.
[23]
Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113: 1093–1101.
[24]
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580–586.
[25]
Das R, Hegyi H, Gerstein M (2000) Genome analyses of spirochetes: a study of the protein structures, functions and metabolic pathways in Treponema pallidum and Borrelia burgdorferi. J Mol Microbiol Biotechnol 2: 387–392.
[26]
Boardman BK, He M, Ouyang Z, Xu H, Pang X, et al. (2008) Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76: 3844–3853.
[27]
Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, et al. (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65: 1193–1217.
[28]
Yang XF, Alani SM, Norgard MV (2003) The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100: 11001–11006.
[29]
Ouyang Z, Blevins JS, Norgard MV (2008) Transcriptional interplay among the regulators Rrp2, RpoN, and RpoS in Borrelia burgdorferi. Microbiology 154: 2641–2658.
[30]
Fisher MA, Grimm D, Henion AK, Elias AF, Stewart PE, et al. (2005) Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102: 5162–5167.
[31]
Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3: 129–143.
[32]
Rogers EA, Terekhova D, Zhang H, Hovis KM, Schwartz I, et al. (2009) Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 71: 1551–1573.
[33]
Sultan SZ, Pitzer JE, Miller MR, Motaleb MA (2010) Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol Microbiol 77: 128–142.
[34]
Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199: 641–648.
[35]
Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, et al. (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113: 220–230.
[36]
Gherardini F, Boylan J, Lawence K, Skare J (2010) Metabolism and Physiology of Borrelia. In: Samules DS, Radolf JD, editors. Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Norfolk, UK: Caister Academic Press. pp. 103–138.
[37]
von Lackum K, Stevenson B (2005) Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett 243: 173–179.
[38]
Singh SK, Girschick HJ (2004) Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi. Lancet Infect Dis 4: 575–583.
[39]
Caimano MJ, Eggers CH, Gonzalez CA, Radolf JD (2005) Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187: 7845–7852.
[40]
Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102: 14422–14427.
[41]
Liu X, Beyhan S, Lim B, Linington RG, Yildiz FH (2010) Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. J Bacteriol 192: 4541–4552.
[42]
Kazmierczak BI, Lebron MB, Murray TS (2006) Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60: 1026–1043.
[43]
Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, et al. (2007) BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189: 8165–8178.
[44]
Hinnebusch BJ, Erickson DL (2008) Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 322: 229–248.
[45]
Hinnebusch BJ, Perry RD, Schwan TG (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273: 367–370.
[46]
Simm R, Fetherston JD, Kader A, Romling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187: 6816–6823.
[47]
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, et al. (2011) Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79: 533–551.
[48]
Stevenson B, Babb K (2002) LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70: 4099–4105.
[49]
Babb K, von Lackum K, Wattier RL, Riley SP, Stevenson B (2005) Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187: 3079–3087.
[50]
Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41: 463–476.
[51]
Hubner A, Revel AT, Nolen DM, Hagman KE, Norgard MV (2003) Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71: 2892–2896.
[52]
Blevins JS, Revel AT, Caimano MJ, Yang XF, Richardson JA, et al. (2004) The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun 72: 4864–4867.
[53]
Kumagai Y, Matsuo J, Hayakawa Y, Rikihisa Y (2010) Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J Bacteriol 192: 4122–4133.
[54]
Tamayo R, Schild S, Pratt JT, Camilli A (2008) Role of cyclic di-GMP during El Tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Infect Immun 76: 1617–1627.
[55]
Lamprokostopoulou A, Monteiro C, Rhen M, Romling U (2010) Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol 12: 40–53.
[56]
Wong FS, Janeway CA (1999) Insulin-dependent diabetes mellitus and its animal models. Curr Opin Immunol 11: 643–647.
[57]
Lee RE, Chen CP, Denlinger DL (1987) A Rapid Cold-Hardening Process in Insects. Science 238: 1415–1417.
[58]
Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, et al. (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411–413.
[59]
Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69: 376–389.
[60]
Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62: 1014–1034.
[61]
Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, et al. (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22: 2434–2446.
[62]
Lim B, Beyhan S, Yildiz FH (2007) Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J Bacteriol 189: 717–729.
[63]
Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190: 2527–2536.
[64]
Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, et al. (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327: 866–868.
[65]
Leduc JL, Roberts GP (2009) Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191: 7121–7122.
[66]
Gomelsky M (2009) Cyclic-di-GMP-binding CRP-like protein: a spectacular new role for a veteran signal transduction actor. J Bacteriol 191: 6785–6787.
[67]
Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH, et al. (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396: 646–662.
[68]
Fong JC, Yildiz FH (2008) Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol 190: 6646–6659.
[69]
Ouyang Z, Kumar M, Kariu T, Haq S, Goldberg M, et al. (2009) BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74: 1331–1343.
[70]
Hyde JA, Seshu J, Skare JT (2006) Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulon. Microbiology 152: 2599–2609.
[71]
Wolfe AJ, Visick KL (2008) Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190: 463–475.
[72]
Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, et al. (2007) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63: 694–710.
[73]
Neelakanta G, Li X, Pal U, Liu X, Beck DS, et al. (2007) Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3: e33. doi:10.1371/journal.ppat.0030033.
[74]
Pal U, Dai J, Li X, Neelakanta G, Luo P, et al. (2008) A differential role for BB0365 in the persistence of Borrelia burgdorferi in mice and ticks. J Infect Dis 197: 148–155.
[75]
Promnares K, Kumar M, Shroder DY, Anderson JF, Pal U (2009) Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 74: 112–125.
[76]
Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, et al. (2005) bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A 102: 6972–6977.
[77]
Ryjenkov DA, Simm R, Romling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281: 30310–30314.
[78]
Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22: 3–6.
[79]
Freedman JC, Rogers EA, Kostick JL, Zhang H, Iyer R, et al. (2010) Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. FEMS Immunol Med Microbiol 58: 285–294.
[80]
Tam R, Saier MH (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57: 320–346.
[81]
Blevins J, Hagman KE, Norgard MV (2008) Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8: 82.
[82]
Gilmore RD, Howison RR, Dietrich G, Patton TG, Clifton DR, et al. (2010) The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 107: 7515–7520.
[83]
Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, et al. (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101: 3142–3147.
[84]
Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, et al. (2006) Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 59: 1591–1601.
[85]
Weening EH, Parveen N, Trzeciakowski JP, Leong JM, Hook M, et al. (2008) Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 76: 5694–5705.
[86]
Maruskova M, Esteve-Gassent MD, Sexton VL, Seshu J (2008) Role of the BBA64 locus of Borrelia burgdorferi in early stages of infectivity in a murine model of Lyme disease. Infect Immun 76: 391–402.
[87]
Kawabata H, Norris SJ, Watanabe H (2004) BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72: 7147–7154.
[88]
Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521–525.
[89]
Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. In: Nickoloff JA, editor. Methods in molecular biology. Totowa, NJ: Humana Press. pp. 253–259.
[90]
Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97: 13865–13870.
[91]
Xu H, Caimano MJ, Lin T, He M, Radolf JD, et al. (2010) Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 6: e1001104. doi:1001110.1001371/journal.ppat.1001104.
[92]
Akins DR, Bourell KW, Caimano MJ, Norgard MV, Radolf JD (1998) A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101: 2240–2250.
[93]
Xu H, He M, He JJ, Yang XF (2010) Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 78: 2910–2918.
[94]
Terekhova D, Iyer R, Wormser GP, Schwartz I (2006) Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol 188: 6124–6134.