全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutières Syndrome Are Highly Susceptible to HIV-1 Infection

DOI: 10.1371/journal.ppat.1002425

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.

References

[1]  Sonza S, Maerz A, Deacon N, Meanger J, Mills J, et al. (1996) Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. J Virol 70: 3863–3869.
[2]  Neil S, Martin F, Ikeda Y, Collins M (2001) Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol. 75. : 5448–5456. 10.1128/JVI.75.12.5448-5456.2001 [doi].
[3]  Kaushik R, Zhu X, Stranska R, Wu Y, Stevenson M (2009) A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 6: 68–80.
[4]  Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, et al. (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7. : 1613–1623. 10.1038/sj.gt.3301292 [doi].
[5]  Fujita M, Otsuka M, Nomaguchi M, Adachi A (2010) Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Rev Med Virol 20: 68–76.
[6]  Goujon C, Arfi V, Pertel T, Luban J, Lienard J, et al. (2008) Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. J Virol 82: 12335–12345.
[7]  Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 65: 5088–5091.
[8]  Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, et al. (1998) Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med 4: 1401–1408.
[9]  Berger A, Munk C, Schweizer M, Cichutek K, Schule S, et al. (2010) Interaction of Vpx and apolipoprotein B mRNA-editing catalytic polypeptide 3 family member A (APOBEC3A) correlates with efficient lentivirus infection of monocytes. J Biol Chem 285: 12248–12254.
[10]  Schule S, Kloke BP, Kaiser JK, Heidmeier S, Panitz S, et al. (2009) Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS One 4: e7098.
[11]  Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, et al. (2006) With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 13: 991–994.
[12]  Gramberg T, Sunseri N, Landau NR (2010) Evidence for an activation domain at the amino terminus of simian immunodeficiency virus Vpx. J Virol 84: 1387–1396.
[13]  Accola MA, Bukovsky AA, Jones MS, Gottlinger HG (1999) A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 73: 9992–9999.
[14]  Strebel K, Luban J, Jeang KT (2009) Human cellular restriction factors that target HIV-1 replication. BMC Med. 7. 48. 1741-7015-7-48 [pii];10.1186/1741-7015-7-48 [doi].
[15]  Wolf D, Goff SP (2008) Host restriction factors blocking retroviral replication. Annu Rev Genet. 42. : 143–163. 10.1146/annurev.genet.42.110807.091704 [doi].
[16]  Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M, et al. (2009) The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol 83: 4854–4860.
[17]  Sharova N, Wu Y, Zhu X, Stranska R, Kaushik R, et al. (2008) Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog 4: e1000057.
[18]  Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, et al. (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4: 2.
[19]  Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, et al. (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 474. : 658–661. nature10195 [pii];10.1038/nature10195 [doi].
[20]  Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, et al. (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 474. : 654–657. nature10117 [pii];10.1038/nature10117 [doi].
[21]  Crow YJ, Livingston JH (2008) Aicardi-Goutieres syndrome: an important Mendelian mimic of congenital infection. Dev Med Child Neurol. 50. : 410–416. DMCN02062 [pii];10.1111/j.1469-8749.2008.02062.x [doi].
[22]  Lee-Kirsch MA (2010) Nucleic acid metabolism and systemic autoimmunity revisited. Arthritis Rheum. 62. : 1208–1212. 10.1002/art.27372 [doi].
[23]  Dussaix E, Lebon P, Ponsot G, Huault G, Tardieu M (1985) Intrathecal synthesis of different alpha-interferons in patients with various neurological diseases. Acta Neurol Scand 71: 504–509.
[24]  Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol. 11. : 1005–1013. ni.1941 [pii];10.1038/ni.1941 [doi].
[25]  Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, et al. (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 41. : 829–832. ng.373 [pii];10.1038/ng.373 [doi].
[26]  du MM, Nurnberg P, Crow YJ, Rutsch F (2011) Cerebral vasculopathy is a common feature in Aicardi-Goutieres syndrome associated with SAMHD1 mutations. Proc Natl Acad Sci U S A. 108. e232 p. 1104699108 [pii];10.1073/pnas.1104699108 [doi].
[27]  Ramesh V, Bernardi B, Stafa A, Garone C, Franzoni E, et al. (2010) Intracerebral large artery disease in Aicardi-Goutieres syndrome implicates SAMHD1 in vascular homeostasis. Dev Med Child Neurol. 52. : 725–732. DMCN3727 [pii];10.1111/j.1469-8749.2010.03727.x [doi].
[28]  Thiele H, du MM, Barczyk K, George C, Schwindt W, et al. (2010) Cerebral arterial stenoses and stroke: novel features of Aicardi-Goutieres syndrome caused by the Arg164X mutation in SAMHD1 are associated with altered cytokine expression. Hum Mutat. 31. : E1836–E1850. 10.1002/humu.21357 [doi].
[29]  Xin B, Jones S, Puffenberger EG, Hinze C, Bright A, et al. (2011) Homozygous mutation in SAMHD1 gene causes cerebral vasculopathy and early onset stroke. Proc Natl Acad Sci U S A. 108. : 5372–5377. 1014265108 [pii];10.1073/pnas.1014265108 [doi].
[30]  Srivastava S, Swanson SK, Manel N, Florens L, Washburn MP, et al. (2008) Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog 4: e1000059.
[31]  Wiskerchen M, Muesing MA (1995) Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol 69: 376–386.
[32]  Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell. 46. : 807–817. 0092-8674(86)90062-0 [pii].
[33]  Munoz C, Misset B, Fitting C, Bleriot JP, Carlet J, et al. (1991) Dissociation between plasma and monocyte-associated cytokines during sepsis. Eur J Immunol. 21. : 2177–2184. 10.1002/eji.1830210928 [doi].
[34]  de Bont ES, Kimpen JL, Tamminga RY, Niemarkt AE, de Leij LH, et al. (2000) Intrinsic capacity of monocytes to produce cytokines ex vivo in patients with acute lymphoblastic leukaemia. Cytokine. 12. : 1723–1726. 10.1006/cyto.2000.0776 [doi];S1043-4666(00)90776-2 [pii].
[35]  Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, et al. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods. 8. : 691–696. nmeth.1649 [pii];10.1038/nmeth.1649 [doi].
[36]  Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005:re7. stke.2862005re7 [pii];10.1126/stke.2862005re7 [doi].
[37]  Oberstrass FC, Lee A, Stefl R, Janis M, Chanfreau G, et al. (2006) Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol. 13. : 160–167. nsmb1038 [pii];10.1038/nsmb1038 [doi].
[38]  Zimmerman MD, Proudfoot M, Yakunin A, Minor W (2008) Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5′-deoxyribonucleotidase YfbR from Escherichia coli. J Mol Biol. 378. : 215–226. S0022-2836(08)00233-7 [pii];10.1016/j.jmb.2008.02.036 [doi].
[39]  Aravind L, Koonin EV (1998) The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci. 23. : 469–472. S0968-0004(98)01293-6 [pii].
[40]  Oussenko IA, Sanchez R, Bechhofer DH (2002) Bacillus subtilis YhaM, a member of a new family of 3′-to-5′ exonucleases in gram-positive bacteria. J Bacteriol 184: 6250–6259.
[41]  Neil S, Bieniasz P (2009) Human immunodeficiency virus, restriction factors, and interferon. J Interferon Cytokine Res. 29. : 569–580. 10.1089/jir.2009.0077 [doi].
[42]  Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W (2008) TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 4. e16 p. 07-PLPA-RA-0403 [pii];10.1371/journal.ppat.0040016 [doi].
[43]  Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, et al. (2011) APOBEC3A Is a Specific Inhibitor of the Early Phases of HIV-1 Infection in Myeloid Cells. PLoS Pathog 7: e1002221.
[44]  Arhel N (2010) Revisiting HIV-1 uncoating. Retrovirology. 7. 96. 1742-4690-7-96 [pii];10.1186/1742-4690-7-96 [doi].
[45]  Connor RI, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology. 206. : 935–944. S0042-6822(85)71016-1 [pii];10.1006/viro.1995.1016 [doi].
[46]  Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, et al. (2010) Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol. 84. : 9760–9774. JVI.01051-10 [pii];10.1128/JVI.01051-10 [doi].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133