全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner

DOI: 10.1371/journal.ppat.1002188

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level.

References

[1]  Morisse JP, Le Gall G, Boilletot E (1991) Hepatitis of viral origin in Leporidae: introduction and aetiological hypotheses. Rev Sci Tech 10: 269–310.
[2]  Xu ZJ, Chen WX (1989) Viral haemorrhagic disease in rabbits: a review. Vet Res Commun 13: 205–212.
[3]  Marcato PS, Benazzi C, Vecchi G, Galeotti M, Della Salda L, et al. (1991) Clinical and pathological features of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev Sci Tech 10: 371–392.
[4]  Turcot-Dubois AL, Le Moullac-Vaidye B, Despiau S, Roubinet F, Bovin N, et al. (2007) Long-term evolution of the CAZY glycosyltransferase 6 (ABO) gene family from fishes to mammals: a birth-and-death evolution model. Glycobiology 17: 516–528.
[5]  Cooke BD, Fenner F (2002) Rabbit haemorrhagic disease and the biological control of wild rabbits, Oryctolagus cuniculus, in Australia and New Zealand. Wildl Res 29: 689–706.
[6]  Delibes-Mateos M, Farfan MA, Olivero J, Marquez AL, Vargas JM (2009) Long-term changes in game species over a long period of transformation in the Iberian Mediterranean landscape. Environ Manage 43: 1256–1268.
[7]  Marchandeau S, Chaval Y, Le Goff E (2000) Prolonged decline in the abundance of wild European rabbits and high immunity level over three years following the arrival of rabbit haemorrhagic disease. Wildl Biol 6: 141–147.
[8]  Bravo LG, Belliure J, Rebollo S (2009) European rabbits as ecosystem engineers: warrens increase lizard density and diversity. Biodivers Conserv 18: 869–885.
[9]  Peshev R, Christova L (2003) The efficacy of a bivalent vaccine against pasteurellosis and rabbit haemorrhagic disease virus. Vet Res Commun 27: 433–444.
[10]  Rodak L, Smid B, Valicek L, Vesely T, Stepanek J, et al. (1990) Enzyme-linked immunosorbent assay of antibodies to rabbit haemorrhagic disease virus and determination of its major structural proteins. J Gen Virol 71(Pt 5): 1075–1080.
[11]  Capucci L, Fusi P, Lavazza A, Pacciarini ML, Rossi C (1996) Detection and preliminary characterization of a new rabbit calicivirus related to rabbit hemorrhagic disease virus but nonpathogenic. J Virol 70: 8614–8623.
[12]  Le Gall-Recule G, Zwingelstein F, Fages MP, Bertagnoli S, Gelfi J, et al. (2011) Characterisation of a non-pathogenic and non-protective infectious rabbit lagovirus related to RHDV. Virology 410: 395–402.
[13]  Strive T, Wright JD, Robinson AJ (2009) Identification and partial characterisation of a new Lagovirus in Australian wild rabbits. Virology 384: 97–105.
[14]  Jahnke M, Holmes EC, Kerr PJ, Wright JD, Strive T (2010) Evolution and phylogeography of the nonpathogenic calicivirus RCV-A1 in wild rabbits in Australia. J Virol 84: 12397–12404.
[15]  Strive T, Wright J, Kovaliski J, Botti G, Capucci L (2010) The non-pathogenic Australian lagovirus RCV-A1 causes a prolonged infection and elicits partial cross-protection to rabbit haemorrhagic disease virus. Virology 398: 125–134.
[16]  Marchandeau S, Le Gall-Recule G, Bertagnoli S, Aubineau J, Botti G, et al. (2005) Serological evidence for a non-protective RHDV-like virus. Vet Res 36: 53–62.
[17]  Le Gall-Recule G, Zwingelstein F, Laurent S, de Boisseson C, Portejoie Y, et al. (2003) Phylogenetic analysis of rabbit haemorrhagic disease virus in France between 1993 and 2000, and the characterisation of RHDV antigenic variants. Arch Virol 148: 65–81.
[18]  Capucci L, Fallacara F, Grazioli S, Lavazza A, Pacciarini ML, et al. (1998) A further step in the evolution of rabbit hemorrhagic disease virus: the appearance of the first consistent antigenic variant. Virus Res 58: 115–126.
[19]  Muller A, Freitas J, Silva E, Le Gall-Recule G, Zwingelstein F, et al. (2009) Evolution of rabbit haemorrhagic disease virus (RHDV) in the European rabbit (Oryctolagus cuniculus) from the Iberian Peninsula. Vet Microbiol 135: 368–373.
[20]  Kerr PJ, Kitchen A, Holmes EC (2009) Origin and phylodynamics of rabbit hemorrhagic disease virus. J Virol 83: 12129–12138.
[21]  Ruvoen-Clouet N, Ganiere JP, Andre-Fontaine G, Blanchard D, Le Pendu J (2000) Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J Virol 74: 11950–11954.
[22]  Alda F, Gaitero T, Suarez M, Merchan T, Rocha G, et al. (2010) Evolutionary history and molecular epidemiology of rabbit haemorrhagic disease virus in the Iberian Peninsula and Western Europe. BMC Evol Biol 10: 347.
[23]  Niedzwiedzka-Rystwej P, Deptula W (2010) Non-specific immunity in rabbits infected with 10 strains of the rabbit haemorrhagic disease virus with different biological properties. Cent Eur J Biol 5: 613–632.
[24]  Bergin IL, Wise AG, Bolin SR, Mullaney TP, Kiupel M, et al. (2009) Novel calicivirus identified in rabbits, Michigan, USA. Emerg Infect Dis 15: 1955–1962.
[25]  Mitro S, Krauss H (1993) Rabbit hemorrhagic disease: a review with special reference to its epizootiology. Eur J Epidemiol 9: 70–78.
[26]  Surridge AK, van der Loo W, Abrantes J, Carneiro M, Hewitt GM, et al. (2008) Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60: 515–525.
[27]  Esteves PJ, Lanning D, Ferrand N, Knight KL, Zhai SK, et al. (2004) Allelic variation at the VHa locus in natural populations of rabbit (Oryctolagus cuniculus, L.). J Immunol 172: 1044–1053.
[28]  Queney G, Ferrand N, Weiss S, Mougel F, Monnerot M (2001) Stationary distributions of microsatellite loci between divergent population groups of the European rabbit (Oryctolagus cuniculus). Mol Biol Evol 18: 2169–2178.
[29]  Branco M, Ferrand N, Monnerot M (2000) Phylogeography of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene. Heredity 85(Pt 4): 307–317.
[30]  van der Loo W, Mougel F, Bouton C, Sanchez MS, Monnerot M (1999) The allotypic patchwork pattern of the rabbit IGKC1 allele b5wf: genic exchange or common ancestry? Immunogenetics 49: 7–14.
[31]  Tian L, Liao J, Li JW, Zhou WR, Zhang XL, et al. (2007) Isolation and identification of a non-haemagglutinating strain of rabbit hemorrhagic disease virus from China and sequence analysis for the VP60 Gene. Virus Genes 35: 745–752.
[32]  Oriol R, Dalix AM (1977) Differences in the maturation of the immune response of A- and A+ rabbits. Good and poor responders respectively for the A antigen. Immunology 33: 91–99.
[33]  Breimer ME, Hansson GC, Karlsson KA, Leffler H (1981) Blood group type glycosphingolipids from the small intestine of different animals analysed by mass spectrometry and thin-layer chromatography. A note on species diversity. J Biochem 90: 589–609.
[34]  Hansson GC (1988) Structural aspects of blood group glycosphingolipids in the gastrointestinal tract. Adv Exp Med Biol 228: 465–494.
[35]  Guillon P, Ruvoen-Clouet N, Le Moullac-Vaidye B, Marchandeau S, Le Pendu J (2009) Association between expression of the H histo-blood group antigen, alpha1,2fucosyltransferases polymorphism of wild rabbits, and sensitivity to rabbit hemorrhagic disease virus. Glycobiology 19: 21–28.
[36]  Turcot AL, Blancher A, Le Moullac-Vaidye B, Despiau S, Rocher J, et al. (2003) Cloning of a rat gene encoding the histo-blood group B enzyme: rats have more than one Abo gene. Glycobiology 13: 919–928.
[37]  Iwamoto S, Kumada M, Kamesaki T, Okuda H, Kajii E, et al. (2002) Rat encodes the paralogous gene equivalent of the human histo-blood group ABO gene. J Biol Chem 277: 46463–46469.
[38]  Gorvel JP, Rigal A, Sarles J, Maroux S (1985) Aminopeptidase N- and human blood group A-antigenicity along the digestive tract and associated glands in the rabbit. Cell Tissue Res 239: 241–248.
[39]  Asgari S, Hardy JR, Sinclair RG, Cooke BD (1998) Field evidence for mechanical transmission of rabbit haemorrhagic disease virus (RHDV) by flies (Diptera:Calliphoridae) among wild rabbits in Australia. Virus Res 54: 123–132.
[40]  Teunis PF, Moe CL, Liu P, Miller SE, Lindesmith L, et al. (2008) Norwalk virus: how infectious is it? J Med Virol 80: 1468–1476.
[41]  Mutze G, Cooke B, Alexander P (1998) The initial impact of rabbit hemorrhagic disease on European rabbit populations in South Australia. J Wildl Dis 34: 221–227.
[42]  Fouchet D, Guitton JS, Marchandeau S, Pontier D (2008) Impact of myxomatosis in relation to local persistence in wild rabbit populations: the role of waning immunity and the reproductive period. J Theor Biol 250: 593–605.
[43]  Fouchet D, Marchandeau S, Langlais M, Pontier D (2006) Waning of maternal immunity and the impact of diseases: the example of myxomatosis in natural rabbit populations. J Theor Biol 242: 81–89.
[44]  Fouchet D, Le Pendu J, Guitton JS, Guiserix M, Marchandeau S, et al. (2009) Evolution of microparasites in spatially and genetically structured host populations: the example of RHDV infecting rabbits. J Theor Biol 257: 212–227.
[45]  Le Pendu J, Ruvoen-Clouet N, Kindberg E, Svensson L (2006) Mendelian resistance to human norovirus infections. Semin Immunol 18: 375–386.
[46]  Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, et al. (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122: 1967–1977.
[47]  Donaldson EF, Lindesmith LC, Lobue AD, Baric RS (2008) Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol Rev 225: 190–211.
[48]  Tan M, Jiang X (2010) Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathog 6: e1000983.
[49]  Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13: 285–293.
[50]  Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Ruvo?n-clouet N, et al. (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83: 565–573.
[51]  Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. New Engl J Med 361: 1776–1785.
[52]  Hutson AM, Airaud F, Le Pendu J, Estes MK, Atmar RL (2005) Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77: 116–120.
[53]  Lindesmith L, Moe CL, Marionneau S, Ruvo?n-clouet N, Jiang X, et al. (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548–553.
[54]  Le Guyader FS, Krol J, Ambert-Balay K, Ruv?en-Clouet N, Desaubliaux B, et al. (2010) Comprehensive analysis of a norovirus-associated gastroenteritis outbreak from the environment to the consumer. J Clin Microbiol 48: 915–920.
[55]  Bucardo F, Kindberg E, Paniagua M, Grahn A, Larson G, et al. (2009) Genetic susceptibility to symtomatic norovirus infection in Nicaragua. J Med Virol 81: 728–735.
[56]  Tan M, Jin M, Xie H, Duan Z, Jiang X, et al. (2008) Outbreak studies of a GII-3 and a GII.4 norovirus revealed an association between HBGA phenotypes and viral infection. J Med Virol 80: 1296–1301.
[57]  Kindberg E, Akerlind B, Johnsen C, Knudsen JD, Heltberg O, et al. (2007) Host genetic resistance to symptomatic norovirus (GGII.4) infections in Denmark. J Clin Microbiol 45: 2720–2722.
[58]  Thorven M, Grahn A, Hedlund K-O, Johansson H, Wahlfrid C, et al. (2005) A homozygous nonsense mutation (428G>A) in the human FUT2 gene provides resistance to symptomatic norovirus (GGII) infections. J Virol 79: 15351–15355.
[59]  Donaldson EF, Lindesmith L, LoBue AD, Baric RS (2010) Viral shape-shifting: norovirus evasion of the human immune system. Nat Rev Microbiol 8: 231–240.
[60]  Tan M, Jiang X (2007) Norovirus-host interaction: implications for disease control and prevention. Expert Rev Mol Med 9: 1–22.
[61]  Silva LM, Carvalho AS, Guillon P, Seixas S, Azevedo M, et al. (2010) Infection-associated FUT2 (fucosyltransferase 2) genetic variation and impact on functionality assessed by in vivo studies. Glycoconj J 27: 61–68.
[62]  Ferrer-Admetlla A, Sikora M, Laayouni H, Esteve A, Roubinet F, et al. (2009) A natural history of FUT2 polymorphism in humans. Mol Biol Evol 26: 1993–2003.
[63]  Fry AE, Griffiths MJ, Auburn S, Diakite M, Forton JT, et al. (2008) Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. Hum Mol Genet 17: 567–576.
[64]  Calafell F, Roubinet F, Ramirez-Soriano A, Saitou N, Bertanpetit J, et al. (2008) Evolutionary dynamics of the human ABO gene. Hum Genet 124: 123–135.
[65]  Koda Y, Tachida H, Wang H, Liu Y, Soejima M, et al. (2001) Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma α(1,3)fucosyltrasnferase gene (FUT6) in human populations. Genetics 158: 747–756.
[66]  Abrantes J, Posada D, Guillon P, Esteves PJ, Le Pendu J (2009) Widespread gene conversion of alpha-2-fucosyltransferase genes in mammals. J Mol Evol 69: 22–31.
[67]  Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39: 121–152.
[68]  Le Pendu J, Le Cabellec M, Bara J (1997) Immunohistological analysis of antibodies against ABH and other glycoconjugates in normal human pyloric and duodenal mucosae. Transfus Clin Biol 1: 41–46.
[69]  Le Pendu J, Henry S (2002) Immunochemical, immunohistological and serological analysis of monoclonal antibodies with carbohydrates: Coordinator's report. Transfus Clin Biol 9: 55–60.
[70]  McIntosh MT, Behan SC, Mohamed FM, Lu Z, Moran KE, et al. (2007) A pandemic strain of calicivirus threatens rabbit industries in the Americas. Virol J 4: 96.
[71]  Sutton-Smith M, Dell A (2006) Analysis of carbohydrates/glycoproteins by mass spectrometry. In: Celis JE, editor. Cell Biology: A Laboratory Handbook. San Diego: Elsevier Academic Press. pp. 415–425.
[72]  Parry S, Ledger V, Tissot B, Haslam SM, Scott J, et al. (2007) Integrated mass spectrometric strategy for characterizing the glycans from glycosphingolipids and glycoproteins: direct identification of sialyl Le(x) in mice. Glycobiology 17: 646–654.
[73]  North SJ, Jang-Lee J, Harrison R, Canis K, Ismail MN, et al. (2010) Mass spectrometric analysis of mutant mice. Methods Enzymol 478: 27–77.
[74]  Dell A (1990) Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccarides. Methods Enzymol 193: 647–660.
[75]  Ceroni A, Maass K, Geyer H, Geyer R, Dell A, et al. (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7: 1650–1659.
[76]  Abrantes J, Esteves PJ, van der Loo W (2008) Evidence for recombination in the major capsid gene VP60 of the rabbit haemorrhagic disease virus (RHDV). Arch Virol 153: 329–335.
[77]  Forrester NL, Moss SR, Turner SL, Schirrmeier H, Gould EA (2008) Recombination in rabbit haemorrhagic disease virus: Possible impact on evolution and epidemiology. Virology 376: 390–396.
[78]  Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462–2463.
[79]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[80]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[81]  Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Austin, Texas: University of Texas at Austin. 125 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133