全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved monaural speech segregation based on computational auditory scene analysis

DOI: 10.1186/1687-4722-2013-2

Keywords: Speech segregation, Computational Auditory Scene Analysis (CASA), Threshold selection, Morphological image processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

A lot of effort has been made in Computational Auditory Scene Analysis (CASA) to segregate target speech from monaural mixtures. Based on the principle of CASA, this article proposes an improved algorithm for monaural speech segregation. To extract the energy feature more accurately, the proposed algorithm improves the threshold selection for response energy in initial segmentation stage. Since the resulting mask map often contains broken auditory element groups after grouping stage, a smoothing stage is proposed based on morphological image processing. Through the combination of erosion and dilation operations, we suppress the intrusions by removing the unwanted particles and enhance the segregated speech by complementing the broken auditory elements. Systematic evaluation shows that the proposed segregation algorithm improves the output signal-to-noise ratio by an average of 8.55 dB and cuts the percentage of noise residue by an average of 25.36% compared with the mixture, yielding a significant improvement for speech segregation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133