全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulation of mesoscale interfacial properties using the lattice Boltzmann method

DOI: 10.1007/s11434-010-4106-3

Keywords: lattice Boltzmann method,mesoscopic interparticle potential,irreversible thermodynamics,free energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

We derive the mesoscopic interparticle potentials from macroscopic thermodynamics for van der Waals, Redlich-Kwong, and Redlich-Kwong-Soave equations of state and find that all these potentials are very similar to the Lennard-Jones potential. To investigate the interfacial property at the mesoscale level, we incorporate free energy functions into the single-component multiphase lattice Boltzmann model and obtain the saturated density coexistence curves and interface mass density profiles across the interface using this method with different equations of state. The simulation results accurately reproduce the properties of equilibrium thermodynamics. Numerical results for single-component phase transitions indicate that a bubble-growth process is obtained and the equilibrium phase diagram is achieved at a given temperature. Bulk free energy, the interfacial energy coefficient, and other properties of nonequilibrium thermodynamic parameters, which are used to examine interfacial properties, are obtained in these simulations, and all these parameters are found to obey irreversible thermodynamics.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133