全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Weighted gradient domain image processing problems and their iterative solutions

DOI: 10.1186/1687-5281-2013-7

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article explores an energy function and its minimization for the weighted gradient domain image processing, where variable weights are applied to the data term of conventional function for attaining better results in some applications. To be specific, larger weights are given to the regions where original pixel values need to be kept unchanged, like strong edge regions in the case of image sharpening application or high contrast regions when fusing multi-exposure images. In the literatures, it is shown that the solution to a constant weight problem can be efficiently obtained in the frequency domain without iterations, whereas the function with the varying weights can be minimized by solving a large sparse linear equation or by iterative methods such as conjugate gradient or preconditioned conjugate gradient (PCG) methods. In addition to introducing weighted gradient domain image processing problems, we also proposed a new approach to finding an efficient preconditioning matrix for this problem, which greatly reduces the condition number of the system matrix and thus reduces the number of iterations for the PCG process to reach the solution. We show that the system matrix for the constant weight problem is an appropriate preconditioner, in the sense that a sub-problem in the PCG is efficiently solved by the FFT and also it ensures the convergent splitting of the system matrix. For the simulation and experiments on some applications, it is shown that the proposed method requires less iteration, memory, and CPU time.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133