|
Structural health monitoring of a cantilever beam using support vector machineKeywords: Support vector machine, Structural health monitoring, FE simulation, noisy data Abstract: In this article, the effectiveness of support vector machine (SVM) is examined for health monitoring of beam-like structures using vibration-induced modal displacement data. The SVM is used to predict the intensity or location of damage in a simulated cantilever beam from displacements of the first mode shape. Twelve levels of damage intensities have been simulated at 12 locations, and six levels of white Gaussian noise have been added, thereby obtaining 1,008 simulations. About 90% of these are used for training the SVM, and the remaining are used for testing. The trained SVM is able to predict damage intensity and location of all the training set data with nearly 100% accuracy. The test set data reveal that SVM is able to predict damage intensity and damage location with errors varying from 0.28% to 4.57% and 0% to 20.3%, respectively, when there is no noise in the data. Addition of noise degrades the performance of SVM, the degradation being significant for intensity prediction and less for damage location prediction. The results demonstrate the use of SVM as a powerful tool for structural health monitoring without using the data of healthy state.
|