全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Three New Alpha1-Antitrypsin Deficiency Variants Help to Define a C-Terminal Region Regulating Conformational Change and Polymerization

DOI: 10.1371/journal.pone.0038405

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alpha1-antitrypsin (AAT) deficiency is a hereditary disorder associated with reduced AAT plasma levels, predisposing adults to pulmonary emphysema. The most common genetic AAT variants found in patients are the mildly deficient S and the severely deficient Z alleles, but several other pathogenic rare alleles have been reported. While the plasma AAT deficiency is a common trait of the disease, only a few AAT variants, including the prototypic Z AAT and some rare variants, form cytotoxic polymers in the endoplasmic reticulum of hepatocytes and predispose to liver disease. Here we report the identification of three new rare AAT variants associated to reduced plasma levels and characterize their molecular behaviour in cellular models. The variants, called Mpisa (Lys259Ile), Etaurisano (Lys368Glu) and Yorzinuovi (Pro391His), showed reduced secretion compared to control M AAT, and accumulated to different extents in the cells as ordered polymeric structures resembling those formed by the Z variant. Structural analysis of the mutations showed that they may facilitate polymerization both by loosening ‘latch’ interactions constraining the AAT reactive loop and through effects on core packing. In conclusion, the new AAT deficiency variants, besides increasing the risk of lung disease, may predispose to liver disease, particularly if associated with the common Z variant. The new mutations cluster structurally, thus defining a region of the AAT molecule critical for regulating its conformational state.

References

[1]  Silverman EK, Sandhaus RA (2009) Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med 360: 2749–2757.
[2]  Stoller JK, Aboussouan LS (2005) Alpha1-antitrypsin deficiency. Lancet 365: 2225–2236.
[3]  Luisetti M, Seersholm N (2004) Alpha1-antitrypsin deficiency. 1: epidemiology of alpha1-antitrypsin deficiency. Thorax 59: 164–169.
[4]  Denden S, Zorzetto M, Amri F, Knani J, Ottaviani S, et al. (2009) Screening for Alpha 1 antitrypsin deficiency in Tunisian subjects with obstructive lung disease: a feasibility report. Orphanet J Rare Dis 4: 12.
[5]  Ferrarotti I, Baccheschi J, Zorzetto M, Tinelli C, Corda L, et al. (2005) Prevalence and phenotype of subjects carrying rare variants in the Italian registry for alpha1-antitrypsin deficiency. J Med Genet 42: 282–287.
[6]  Evans MD, Pryor WA (1994) Cigarette smoking, emphysema, and damage to alpha 1-proteinase inhibitor. Am J Physiol 266: L593–611.
[7]  Perlmutter DH (2002) Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J Clin Invest 110: 1579–1583.
[8]  Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357: 605–607.
[9]  Dafforn TR, Mahadeva R, Elliott PR, Sivasothy P, Lomas DA (1999) A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem 274: 9548–9555.
[10]  Gooptu B, Hazes B, Chang WS, Dafforn TR, Carrell RW, et al. (2000) Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc Natl Acad Sci U S A 97: 67–72.
[11]  Gooptu B, Lomas DA (2009) Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem 78: 147–176.
[12]  Chiou A, Hagglof P, Orte A, Chen AY, Dunne PD, et al. (2009) Probing neuroserpin polymerization and interaction with amyloid-beta peptides using single molecule fluorescence. Biophys J 97: 2306–2315.
[13]  Ekeowa UI, Freeke J, Miranda E, Gooptu B, Bush MF, et al. (2010) Defining the mechanism of polymerization in the serpinopathies. Proc Natl Acad Sci U S A 107: 17146–17151.
[14]  Yamasaki M, Li W, Johnson DJ, Huntington JA (2008) Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455: 1255–1258.
[15]  Yamasaki M, Sendall TJ, Pearce MC, Whisstock JC, Huntington JA (2011) Molecular basis of alpha(1)-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep 12: 1011–1017.
[16]  Lomas DA, Elliott PR, Sidhar SK, Foreman RC, Finch JT, et al. (1995) alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization. J Biol Chem 270: 16864–16870.
[17]  Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW (1993) Alpha 1-antitrypsin Siiyama (Ser53–>Phe). Further evidence for intracellular loop-sheet polymerization. J Biol Chem 268: 15333–15335.
[18]  Miranda E, Perez J, Ekeowa UI, Hadzic N, Kalsheker N, et al. (2010) A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency. Hepatology 52: 1078–1088.
[19]  Medicina D, Montani N, Fra AM, Tiberio L, Corda L, et al. (2009) Molecular characterization of the new defective P(brescia) alpha1-antitrypsin allele. Hum Mutat 30: E771–781.
[20]  Mahadeva R, Chang WS, Dafforn TR, Oakley DJ, Foreman RC, et al. (1999) Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J Clin Invest 103: 999–1006.
[21]  Gorrini M, Ferrarotti I, Lupi A, Bosoni T, Mazzola P, et al. (2006) Validation of a rapid, simple method to measure alpha1-antitrypsin in human dried blood spots. Clin Chem 52: 899–901.
[22]  Ferrarotti I, Scabini R, Campo I, Ottaviani S, Zorzetto M, et al. (2007) Laboratory diagnosis of alpha1-antitrypsin deficiency. Transl Res 150: 267–274.
[23]  Ferrarotti I, Zorzetto M, Scabini R, Mazzola P, Campo I, et al. (2004) A novel method for rapid genotypic identification of alpha 1-antitrypsin variants. Diagn Mol Pathol 13: 160–163.
[24]  Wu Y, Swulius MT, Moremen KW, Sifers RN (2003) Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A 100: 8229–8234.
[25]  Miranda E, Romisch K, Lomas DA (2004) Mutants of neuroserpin that cause dementia accumulate as polymers within the endoplasmic reticulum. J Biol Chem 279: 28283–28291.
[26]  Zorzetto M, Russi E, Senn O, Imboden M, Ferrarotti I, et al. (2008) SERPINA1 gene variants in individuals from the general population with reduced alpha1-antitrypsin concentrations. Clin Chem 54: 1331–1338.
[27]  Jardi R, Rodriguez F, Miravitlles M, Vidal R, Cotrina M, et al. (1998) Identification and molecular characterization of the new alpha-1-antitrypsin deficient allele PI Y barcelona (Asp256–>Val and Pro391–>His). Mutations in brief no. 174. Online. Hum Mutat 12: 213.
[28]  Poller W, Merklein F, Schneider-Rasp S, Haack A, Fechner H, et al. (1999) Molecular characterisation of the defective alpha 1-antitrypsin alleles PI Mwurzburg (Pro369Ser), Mheerlen (Pro369Leu), and Q0lisbon (Thr68Ile). Eur J Hum Genet 7: 321–331.
[29]  Miranda E, MacLeod I, Davies MJ, Perez J, Romisch K, et al. (2008) The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum Mol Genet 17: 1527–1539.
[30]  Belorgey D, Irving JA, Ekeowa UI, Freeke J, Roussel BD, et al. (2011) Characterisation of serpin polymers in vitro and in vivo. Methods 53: 255–266.
[31]  Wardell MR, Chang WS, Bruce D, Skinner R, Lesk AM, et al. (1997) Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1. Biochemistry 36: 13133–13142.
[32]  Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, et al. (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276: 33293–33296.
[33]  Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, et al. (2006) An overview of the serpin superfamily. Genome Biol 7: 216.
[34]  Kim MJ, Jung CH, Im H (2006) Characterization and suppression of dysfunctional human alpha1-antitrypsin variants. Biochem Biophys Res Commun 343: 295–302.
[35]  Eldering E, Verpy E, Roem D, Meo T, Tosi M (1995) COOH-terminal substitutions in the serpin C1 inhibitor that cause loop overinsertion and subsequent multimerization. J Biol Chem 270: 2579–2587.
[36]  Chang WS, Whisstock J, Hopkins PC, Lesk AM, Carrell RW, et al. (1997) Importance of the release of strand 1C to the polymerization mechanism of inhibitory serpins. Protein Sci 6: 89–98.
[37]  Brodbeck RM, Brown JL (1994) Study of the roles of proline 391 and a highly conserved sequence in the carboxyl-terminal region of members of the serpin family in the secretion of alpha 1-proteinase inhibitor. J Biol Chem 269: 17252–17256.
[38]  Elliott PR, Stein PE, Bilton D, Carrell RW, Lomas DA (1996) Structural explanation for the deficiency of S alpha 1-antitrypsin. Nat Struct Biol 3: 910–911.
[39]  Gooptu B, Miranda E, Nobeli I, Mallya M, Purkiss A, et al. (2009) Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of alpha1-antitrypsin: implications for disease and drug design. J Mol Biol 387: 857–868.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133