全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Validating distance decay through agent based modeling

DOI: 10.1186/2190-8532-2-3

Keywords: Distance decay agent based modeling movement patterns, Computational criminology

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objectives of this research are to display the utility of using agent based model and simulated experiments in understanding criminal behavior. In particular, this research focuses upon the distance decay function that has wide applicability in understanding ways in which offenders move about their awareness space and select their targets for committing crime. The basis for distance decay is an assumption that the offender apprehends recognition by his neighbors and so tends to commit his crime a little away but not too far from his home location. But this is an untested assumption and based upon another assumption that recognition comes from frequent interactions. There is no simple way to test these assumptions in real life. This paper argues that simulated experiments using agent based modeling are appropriate methods for difficult to test criminological concepts. In this research, two types of agents are created- one representing the offender and the other- the victim. They are assigned specific characteristics that control their action such as moving in a neighborhood, making rational choice to maximize their gain while minimizing the risk of apprehension from interaction with other residents of the neighborhood. The simulation result displays that beginning with these small principles the final model emerges as a pattern of target selection similar to the distance decay function. The importance of this technique lies in the fact that such experiments provide the means to apply agent based modeling to validate a variety of criminological concepts. While the technique has limitations of validation it can help in understanding the behavior of offenders as they commit their crimes individually as well as in groups.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133