Triclocarban (3,4,4′-trichlorocarbanilide, TCC) is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs). To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR) and estrogen receptor alpha (ERα) activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR) because no induction occurred in hUGT1Car?/? mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for potential human health effects from exposure to TCC.
References
[1]
Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, et al. (2003) Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J Appl Microbiol 94: 240–247.
[2]
Scientific Commitee on Consumer Products (2005) SCCP. Opinion on triclocarban for other uses as a preservative. Calipa n degree P29. European Union. SCCP/0851/04.
[3]
Perencevich EN, Wong MT, Harris AD (2001) National and regional assessment of the antibacterial soap market: a step toward determining the impact of prevalent antibacterial soaps. Am J Infect Control 29: 281–283.
[4]
Kumar KS, Priya SM, Peck AM, Sajwan KS (2010) Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol 58: 275–285.
[5]
Chen F, Ying GG, Kong LX, Wang L, Zhao JL, et al. (2011) Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ Pollut 159: 1490–1498.
[6]
Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40: 3634–3639.
[7]
Heidler J, Halden RU (2008) Meta-analysis of mass balances examining chemical fate during wastewater treatment. Environ Sci Technol 42: 6324–6332.
[8]
Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39: 1420–1426.
[9]
Liu JY, Qiu H, Morisseau C, Hwang SH, Tsai HJ, et al. (2011) Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model. Toxicol Appl Pharmacol 255: 200–206.
[10]
Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, et al. (2008) In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect 116: 1203–1210.
[11]
Schebb NH, Inceoglu B, Ahn KC, Morisseau C, Gee SJ, et al. (2011) Investigation of human exposure to triclocarban after showering and preliminary evaluation of its biological effects. Environ Sci Technol 45: 3109–3115.
[12]
Higgins CP, Paesani ZJ, Chalew TE, Halden RU (2009) Bioaccumulation of triclocarban in Lumbriculus variegatus. Environ Toxicol Chem 28: 2580–2586.
[13]
Chen J, Ahn KC, Gee NA, Ahmed MI, Duleba AJ, et al. (2008) Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149: 1173–1179.
[14]
Christen V, Crettaz P, Oberli-Schrammli A, Fent K (2010) Some flame retardants and the antimicrobials triclosan and triclocarban enhance the androgenic activity in vitro. Chemosphere 81: 1245–1252.
[15]
Liu JY, Qiu H, Morisseau C, Hwang SH, Tsai HJ, et al. (2011) Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model. Toxicol Appl Pharmacol 255: 200–206.
[16]
Forman BM, Tzameli I, Choi HS, Chen J, Simha D, et al. (1998) Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature 395: 612–615.
[17]
Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83: 841–850.
[18]
Xie W, Barwick JL, Simon CM, Pierce AM, Safe S, et al. (2000) Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR. Genes Dev 14: 3014–3023.
[19]
Fujiwara R, Nguyen N, Chen S, Tukey RH (2010) Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc Natl Acad Sci U S A 107: 5024–5029.
[20]
Chen S, Beaton D, Nguyen N, Senekeo-Effenberger K, Brace-Sinnokrak E, et al. (2005) Tissue-specific, inducible, and hormonal control of the human UDP-glucuronosyltransferase-1 (UGT1) locus. J Biol Chem 280: 37547–37557.
[21]
Nguyen N, Bonzo JA, Chen S, Chouinard S, Kelner M, et al. (2008) Disruption of the Ugt1 locus in mice resembles human Crigler-Najjar type I disease. J Biol Chem 283: 7901–7911.
[22]
Strassburg CP, Manns MP, Tukey RH (1997) Differential down regulation of the UDP-glucuronosyltransferase 1A locus is an early event in human liver and biliary cancer. Cancer Res 57: 2979–2985.
[23]
Strassburg CP, Oldhafer K, Manns MP, Tukey RH (1997) Differential expression of the UGT1A locus in human liver, biliary, and gastric tissue: identification of UGT1A7 and UGT1A10 transcripts in extrahepatic tissue. Mol Pharmacol 52: 212–220.
[24]
Strassburg CP, Nguyen N, Manns MP, Tukey RH (1998) Polymorphic expression of the UDP-glucuronosyltransferase UGT1A gene locus in human gastric epithelium. Molecular Pharmacology 54: 647–654.
[25]
Tukey RH, Strassburg CP (2001) Genetic multiplicity of the human UDP-glucuronosyltransferases and regulation in the gastrointestinal tract. Molecular Pharmacology 59: 405–414.
[26]
Cai H, Nguyen N, Peterkin V, Yang YS, Hotz K, et al. (2010) A Humanized UGT1 Mouse Model Expressing the UGT1A1*28 Allele for Assessing Drug Clearance by UGT1A1 Dependent Glucuronidation. Drug Metab Dispos 38: 879–86.
[27]
Xie W, Barwick JL, Downes M, Blumberg B, Simon CM, et al. (2000) Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406: 435–439.
[28]
Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E, et al. (2004) PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev 18: 528–540.
[29]
Umesono K, Giguere V, Glass CK, Rosenfeld MG, Evans RM (1988) Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336: 262–265.
[30]
Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, et al. (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9: 1033–1045.
[31]
Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, et al. (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296: 1313–1316.
[32]
Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, et al. (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11: 1079–1092.
[33]
Umesono K, Evans RM (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57: 1139–1146.
[34]
Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, et al. (2002) Diverse Roles of the Nuclear Orphan Receptor CAR in Regulating Hepatic Genes in Response to Phenobarbital. Mol Pharmacol 61: 1–6.
[35]
Yueh MF, Mellon PL, Tukey RH (2011) Inhibition of Human UGT2B7 Gene Expression in Transgenic Mice by the Constitutive Androstane Receptor. Mol Pharmacol 79: 1053–60.
[36]
Yueh MF, Tukey RH (2007) Nrf2-Keap1 Signaling Pathway Regulates Human UGT1A1 Expression in Vitro and in Transgenic UGT1 Mice. J Biol Chem 282: 8749–8758.
[37]
Xie W, Yeuh MF, Radominska-Pandya A, Saini SPS, Negishi Y, et al. (2003) Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci USA 100: 4150–4155.
[38]
Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, et al. (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 64: 3119–3125.
[39]
Lo R, Burgoon L, Macpherson L, Ahmed S, Matthews J (2010) Estrogen receptor-dependent regulation of CYP2B6 in human breast cancer cells. Biochim Biophys Acta 1799: 469–479.
[40]
Maglich JM, Parks DJ, Moore LB, Collins JL, Goodwin B, et al. (2003) Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem 278: 17277–17283.
[41]
Senekeo-Effenberger K, Chen S, Brace-Sinnokrak E, Bonzo JA, Yueh MF, et al. (2007) Expression of the Human UGT1 Locus in Transgenic Mice by 4-Chloro-6-(2,3-xylidino)-2-pyrimidinylt?hioaceticAcid (WY-14643) and Implications on Drug Metabolism through Peroxisome Proliferator-Activated Receptor α Activation. Drug Metab Dispos 35: 419–427.
[42]
Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M (1999) The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 274: 6043–6046.
[43]
Miao J, Fang S, Bae Y, Kemper JK (2006) Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J Biol Chem 281: 14537–14546.
[44]
Chen X, Meng Z, Wang X, Zeng S, Huang W (2011) The nuclear receptor CAR modulates alcohol-induced liver injury. Lab Invest 91: 1136–1145.
[45]
Carthew P, Edwards RE, Nolan BM (1998) The quantitative distinction of hyperplasia from hypertrophy in hepatomegaly induced in the rat liver by phenobarbital. Toxicol Sci 44: 46–51.
[46]
Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR (2004) The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res 64: 7197–7200.
[47]
Hiles RA, Birch CG (1978) The absorption, excretion, and biotransformation of 3,4,4'-trichlorocarbanilide in humans. Drug Metab Dispos 6: 177–183.
[48]
Wang H, Tompkins LM (2008) CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 9: 598–610.
[49]
Giudice BD, Young TM (2010) The antimicrobial triclocarban stimulates embryo production in the freshwater mudsnail Potamopyrgus antipodarum. Environ Toxicol Chem 29: 966–970.
[50]
Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT (2003) Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 144: 3382–3398.
[51]
Min G, Kim H, Bae Y, Petz L, Kemper JK (2002) Inhibitory cross-talk between estrogen receptor (ER) and constitutively activated androstane receptor (CAR). CAR inhibits ER-mediated signaling pathway by squelching p160 coactivators. J Biol Chem 277: 34626–34633.
[52]
Kawamoto T, Kakizaki S, Yoshinari K, Negishi M (2000) Estrogen activation of the nuclear orphan receptor CAR (constitutive active receptor) in induction of the mouse Cyp2b10 gene. Mol Endocrinol 14: 1897–1905.