Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucos?aminelysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucos?amine-6-sulphatelysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.
References
[1]
Tanaka A, Fujimaru M, Choeh K, Isshiki G (1999) Novel Mutations, including the second most common in Japan, in the B-hexosaminidase A subunit gene, a simple screening of Japanese patients with Tay-sach’s disease. J. Hum. Genet 44: 91–95.
[2]
Fernades Filho JA, Shapiro BE (2004) Tay-sachs disease. Arch Neurol 61: 1466–1468.
[3]
Myerowitz R, Costigan FC (1988) The major defect in Ashkenazi Jews with Tay-sachs disease is an insertion in the gene for alpha-chain of beta-hexosaminidase. J Biol Chem 263: 18587–9.
[4]
Myerowitz R, Hogikyan ND (1986) Different mutations in Ashkenazi Jewish and non-Jewish French Canadians with Tay-Sachs disease. Science 232 (4758): 1646–81986.
[5]
Kaback M, Lim Steele J, Dabholkar D, Brown D, Levy N, et al. (1993) Tay-sachs disease carrier screening, prenatal diagnosis and the molecular era. An international perspective, 1970–1993. The International TSD data collection Network. JAMA 270: 2307–15.
[6]
Cao Z, Natowicz MR, Kaback MM, Lim-steele JS, Prence EM, et al. (1993) A second mutation associated with, apparent beta-hexosaminidase A pseudodeficiency: identification and frequency estimation. Am J Hum Genet 53: 1198–1205.
[7]
Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 4(7): 1073–81.
[8]
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7 (4): 248–249.
[9]
Schwarz JM, R?delsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8): 575–6.
[10]
Kaback MM, Desnick RJ (1999) Hexosaminidase A Deficiency. In: Pagon RA, Bird TD, Dolan CR, Stephens K, editors. Available from. http://www.ncbi.nlm.nih.gov/bookshelf/br?.fcgi?book=gene&part=tay-sachs.
[11]
Nalini A, Christopher R (2004) Cerebral Glycolipidoses: Clinical Characteristics of 41 Pediatric Patients. J Child Neurol 19(6): 447–452.
[12]
Akli S, Chelly J, Lacorte JM, Poenaru L, Kahn A (1991) Seven novel Tay-Sachs mutations detected by chemical mismatch cleavage of PCR-amplified cDNA fragments. Genomics 11: 124–134.
[13]
Ozkara HA, Navon R (1998) At least six different mutations in HEXA gene cause Tay-Sachs disease among the Turkish population. Mol Genet Metab. 65(3): 250–253.
[14]
Haghighi A, Rezazadeh J, Shadmehri AA, Haghighi A, Kornreich R, et al. (2011) Identification of two HEXA mutations causing infantile-onset Tay-Sachs disease in the Persian population. J Hum Genet. 56(9): 682–4.
[15]
Ohno K, Saito S, Sugawara K, Sakuraba H (2008) Structural consequences of amino acid substitutions causing Tay-sachs disease. Molecular Genetics and Metabolism 94: 2–468.
[16]
Tanaka A, Fujimaru M, Choeh K, Isshiki G (1999) Novel mutations, including the second most common in Japan, in the beta-hexosaminidase alpha subunit gene, and a simple screening of Japanese patients with Tay-Sachs disease. J Hum Genet. 44(2): 91–5.
[17]
Fernandes M, Kaplan F, Naciwicz M, Prense E, Kolodny E, et al. (1992) A new Tay-Sachs disease B1 allele in in exon 7 in two compound heterozygotes each with a second novel mutation. Hum Mol Genet 1: 759–761.
[18]
Akli S, Chomel J-C, Lacorte J-M, Bachner L, Kahn A, et al. (1993) Ten novel mutations in the HEXA gene in non- Jewish Tay-Sachs patients. Hum Mol Genet 2: 61–67.
[19]
Matsuzawa F, Aikawa S, Sakuraba H, Lan HT, Tanaka A, et al. (2003) Structural basis of the GM2 gangliosidosis B variant. J Hum Genet. 48(11): 582–9.
[20]
Triggs-Raine B, Richard M, Wasel N, Prence EM, Natowicz MR (1995) Mutational analyses of Tay-Sachs disease: studies on Tay-Sachs carriers of French Canadian background living in New England. Am J Hum Genet 56(4): 870–9.
[21]
Ribeiro MG, Pinto R, Miranda MC, Suzuki K (1995) Tay-Sachs disease: intron 7 splice junction mutation in two Portuguese patients. Biochim Biophys Acta. 1270(1): 44–51.
[22]
Hechtman P, Boulay B, De Braekeleer M, Andermann E, Melan?on S, et al. (1992) The intron 7 donor splice site transition: a second Tay-Sachs disease mutation in French Canada. Hum Genet. 90(4): 402–6.
[23]
Gravel RA, Kaback MM, Proia RL, Sandhoff K, Suzuki K (1995) The GM2 gangliosidosis. In Scriver CR, Beaudet AL, Sly WS and Valle D (Editors), The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, 3827–3876.
[24]
Mahuran DJ (1999) Biochemical consequences of mutations causing the GM2 gangliosidosis. Biochem Biophys Acta 1455: 105–138.
[25]
Wendeler M, Sandhoff K (2009) Hexosaminidase assays. Glycoconj J 26 (8), 945–952.
[26]
Kaplan F, Bouly B, Baylearn J, Hectman P (1991) Allele-specific amplification of genomic DNA for detection of deletion mutations: Identification of a French-Canadian tay-sachs mutation. J Inher Metab Dis 14: 707–714.
[27]
Stockley TL, Ray PN (2003) Multiplexed Fluorescence Analysis for mutations causing Tay-Sachs disease in Methods in Molecular Biology: Neurogenetics Methods and Protocols edited by Potter NT Humana Press vol-217: 131–142.
[28]
Trigss Raine BL, Akerman BR, Clarke JT, Gravel RA (1991) Sequencing of DNA flanking the exons of the HEXA gene, and identification of mutation in Tay-sachs disease. Am J Hum Genet 49: 1041–1054.
[29]
Lemieux MJ, Mark BL, Cherney MM, Withers SG, Mahuran DJ, et al. (2006) Crystallographic structure of human β-hexosaminidase A: Interpretation of Tay- Sachs mutations and loss of GM2 ganglioside hydrolysis. J Mol Biol 359: 913–929.