全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Differences in the Curing of [PSI+] Prion by Various Methods of Hsp104 Inactivation

DOI: 10.1371/journal.pone.0037692

Full-Text   Cite this paper   Add to My Lib

Abstract:

[PSI+] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI+] by the same mechanism– inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI+] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI+] and inactivation of Hsp104 cures [PSI+] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.

References

[1]  Wickner RB, Edskes HK, Maddelein ML, Taylor KL, Moriyama H (1999) Prions of yeast and fungi. Proteins as genetic material. J Biol Chem 274: 555– 558.
[2]  Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268: 880– 884.
[3]  Moriyama H, Edskes HK, Wickner RB (2000) [URE3] Prion Propagation in Saccharomyces cerevisiae: Requirement for Chaperone Hsp104 and Curing by Overexpressed Chaperone Ydj1p. Mol Cell Biol 20: 8916– 8922.
[4]  Lee S, Sowa ME, Choi JM, Tsai FT (2004) The ClpB/Hsp104 molecular chaperone–a protein disaggregating machine. J Struct Biol 146: 99– 105.
[5]  Tuite MF, Mundy CR, Cox BS (1981) Agents that cause a high frequency of genetic change from [PSI+] to [psi-] in Sacchromyces cerevisiae. Genetics 98: 691– 711.
[6]  Jung G, Masison DC (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol 43: 7– 10.
[7]  Wegrzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YO (2001) Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol 21: 4656– 4669.
[8]  Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273: 622– 626.
[9]  Borchsenius AS, Wegrzyn RD, Newnam GP, Inge-Vechtomov SG, Chernoff YO (2001) Yeast prion protein derivative defective in aggregate shearing and production of new 'seeds'. EMBO J 20: 6683– 6691.
[10]  DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93: 1241– 1252.
[11]  Zhou P, Derkatch IL, Liebman SW (2001) The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI+] and [PIN+]. Mol Microbiol 39: 37– 46.
[12]  Song Y, Wu YX, Jung G, Tutar Y, Eisenberg E, et al. (2005) Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryot Cell 4: 289– 297.
[13]  Satpute-Krishnan P, Serio TR (2005) Prion protein remodelling confers an immediate phenotypic switch. Nature 437: 262– 265.
[14]  Chernoff YO (2004) Cellular control of prion formation and propagation in yeast. Telling GC, editor. Prions and Prion Diseases: Current Perspectives Norfolk, England: Horizon Biosciences. pp. 257– 357.
[15]  Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 40: 1357– 1369.
[16]  Ness F, Ferreira P, Cox BS, Tuite MF (2002) Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol Cell Biol 22: 5593– 5605.
[17]  Eaglestone SS, Ruddock LW, Cox BS, Tuite MF (2000) Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 240– 244.
[18]  Byrne LJ, Cox BS, Cole DJ, Ridout MS, Morgan BJ, et al. (2007) Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proc Natl Acad Sci U S A 104: 11688– 11693.
[19]  Satpute-Krishnan P, Langseth SX, Serio TR, et al. (2007) Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol 5: e24.
[20]  Kawai-Noma S, Pack C-G, Tsuji T, Kinjo M, Taguchi H (2009) Single mother–daughter pair analysis to clarify the diffusion properties of yeast prion Sup35 in guanidine-HCl-treated [PSI+] cells. Genes Cells 14: 1045– 1054.
[21]  Wu YX, Greene LE, Masison DC, Eisenberg E (2005) Curing of yeast [PSI+] prion by guanidine inactivation of Hsp104 does not require cell division. Proc Natl Acad Sci U S A 102: 12789– 12794.
[22]  Mathur V, Hong JY, Liebman SW (2009) Ssa1 Overexpression and [PIN+] variants cure [PSI+] by dilution of aggregates. J Mol Biol 390: 155– 167.
[23]  Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protocols 2: 38– 41.
[24]  Park YN, Masison D, Eisenberg E, Greene LE (2011) Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28: 673– 681.
[25]  Hung G-C, Masison DC (2006) N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics 173: 611– 620.
[26]  Jung G, Jones G, Wegrzyn RD, Masison DC (2000) A role for cytosolic hsp70 in yeast [[PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156: 559– 570.
[27]  Greene LE, Park YN, Masison DC, Eisenberg E (2009) Application of GFP-labeling to study prions in yeast. Protein Pept Lett 16: 635– 641.
[28]  Cox B, Ness F, Tuite M (2003) Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165: 23– 33.
[29]  Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A (2003) Global analysis of protein expression in yeast. Nature 425: 737– 741.
[30]  Byrne LJ, Cole DJ, Cox BS, Ridout MS, Morgan BJT, et al. (2009) The number and transmission of [PSI+] prion seeds (propagons) in the yeast Saccharomyces cerevisiae. PLoS ONE 4: e4670.
[31]  Derdowski A, Sindi SS, Klaips CL, DiSalvo S, Serio TR (2010) A size threshold limits prion transmission and establishes phenotypic diversity. Science 330: 680– 683.
[32]  Grimminger V, Richter K, Imhof A, Buchner J, Walter S (2004) The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem 279: 7378– 7383.
[33]  Schirmer EC, Ware DM, Queitsch C, Kowal AS, Lindquist SL (2001) Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci U S A 98: 914– 919.
[34]  Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic Interactions between Yeast Chaperones Hsp104 and Hsp70 in Prion Curing. Mol Cell Biol 19: 1325– 1333.
[35]  Kawai-Noma S, Ayano S, Pack C-G, Kinjo M, Yoshida M, et al. (2006) Dynamics of yeast prion aggregates in single living cells. Genes Cells 11: 1085– 1096.
[36]  Elsner M, Hashimoto H, Simpson JC, Cassel D, Nilsson T, et al. (2003) Spatiotemporal dynamics of the COPI vesicle machinery. EMBO Rep 4: 1000– 1004.
[37]  Wang Z, Shah JV, Chen Z, Sun CH, Berns MW (2004) Fluorescence correlation spectroscopy investigation of a GFP mutant-enhanced cyan fluorescent protein and its tubulin fusion in living cells with two-photon excitation. J Biomed Opt 9: 395– 403.
[38]  Bagriantsev SN, Gracheva EO, Richmond JE, Liebman SW (2008) Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol Biol Cell 19: 2433– 2443.
[39]  Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21: 2410– 2421.
[40]  Tanaka M, Collins SR, Toyama BH, Weissman JS (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442: 585– 589.
[41]  Roll-Mecak A, Vale RD (2008) Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451: 363– 367.
[42]  Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15: 3127– 3134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133