全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Protective Effect of Curcumin on Pulmonary and Cardiovascular Effects Induced by Repeated Exposure to Diesel Exhaust Particles in Mice

DOI: 10.1371/journal.pone.0039554

Full-Text   Cite this paper   Add to My Lib

Abstract:

Particulate air pollution has been associated with increased risk of cardiopulmonary diseases. However, the underlying mechanisms are not fully understood. We have previously demonstrated that single dose exposure to diesel exhaust particle (DEP) causes lung inflammation and peripheral thrombotic events. Here, we exposed mice with repeated doses of DEP (15μg/animal) every 2nd day for 6 days (a total of 4 exposures), and measured several cardiopulmonary endpoints 48 h after the end of the treatments. Moreover, the potential protective effect of curcumin (the yellow pigment isolated from turmeric) on DEP-induced cardiopulmonary toxicity was assessed. DEP exposure increased macrophage and neutrophil numbers, tumor necrosis factor α (TNF α) in the bronchoalveolar lavage (BAL) fluid, and enhanced airway resistance to methacoline measured invasively using Flexivent. DEP also significantly increased plasma C-reactive protein (CRP) and TNF α concentrations, systolic blood pressure (SBP) as well as the pial arteriolar thrombosis. It also significantly enhanced the plasma D-dimer and plasminogen activator inhibitor-1 (PAI-1). Pretreatment with curcumin by oral gavage (45 mg/kg) 1h before exposure to DEP significantly prevented the influx of inflammatory cells and the increase of TNF α in BAL, and the increased airway resistance caused by DEP. Likewise, curcumin prevented the increase of SBP, CRP, TNF α, D-dimer and PAI-1. The thrombosis was partially but significantly mitigated. In conclusion, repeated exposure to DEP induced lung and systemic inflammation characterized by TNFα release, increased SBP, and accelerated coagulation. Our findings indicate that curcumin is a potent anti-inflammatory agent that prevents the release of TNFα and protects against the pulmonary and cardiovascular effects of DEP.

References

[1]  Franchini M, Mannucci PM (2011) Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 118: 2405–2412.
[2]  Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, et al. (2010) Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association. Circulation 121: 2331–2378.
[3]  Vermylen J, Nemmar A, Nemery B, Hoylaerts MF (2005) Ambient air pollution and acute myocardial infarction. J Thromb Haemost 3: 1955–1961.
[4]  Mills NL, Tornqvist H, Gonzalez MC, Vink E, Robinson SD, et al. (2007) Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 357: 1075–1082.
[5]  Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, et al. (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6: 36–44.
[6]  Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, et al. (2003) Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 107: 1202–1208.
[7]  Nemmar A, Al Salam S, Dhanasekaran S, Sudhadevi M, Ali BH (2009) Pulmonary exposure to diesel exhaust particles promotes cerebral microvessel thrombosis: protective effect of a cysteine prodrug l-2-oxothiazolidine-4-carboxylic acid. Toxicology 263: 84–92.
[8]  Nemmar A, Al-Salam S, Zia S, Marzouqi F, Al-Dhaheri A, et al. (2011) Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol 164: 1871–1882.
[9]  Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G (2006) Some biological properties of curcumin: A review. Natural Product Communications 1: 509–521.
[10]  Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78: 2081–2087.
[11]  Shishodia S, Potdar P, Gairola CG, Aggarwal BB (2003) Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24: 1269–1279.
[12]  Punithavathi D, Venkatesan N, Babu M (2000) Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 131: 169–172.
[13]  Suzuki M, Betsuyaku T, Ito Y, Nagai K, Odajima N, et al. (2009) Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 296: L614–L623.
[14]  Nemmar A, Al Maskari S, Ali BH, Al Amri IS (2007) Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. Am J Physiol Lung Cell Mol Physiol 292: L664–L670.
[15]  Saber AT, Bornholdt J, Dybdahl M, Sharma AK, Loft S, et al. (2005) Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation. Arch Toxicol 79: 177–182. 10.1007/s00204-004-0613-9 [doi].
[16]  Ying Z, Yue P, Xu X, Zhong M, Sun Q, et al. (2009) Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase. Am J Physiol Heart Circ Physiol 296: H1540–H1550.
[17]  Vanoirbeek JA, Tarkowski M, Ceuppens JL, Verbeken EK, Nemery B, et al. (2004) Respiratory response to toluene diisocyanate depends on prior frequency and concentration of dermal sensitization in mice. Toxicol Sci 80: 310–321.
[18]  Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, et al. (2004) Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304: 600–602. 10.1126/science.1093941 [doi];304/5670/600 [pii].
[19]  Mutlu GM, Green D, Bellmeyer A, Baker CM, Burgess Z, et al. (2007) Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 117: 2952–2961.
[20]  Brook RD, Franklin B, Cascio W, Hong YL, Howard G, et al. (2004) Air pollution and cardiovascular disease-A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109: 2655–2671.
[21]  U.N.Environment Program and WHO Report (1994) Air Pollution in the world's megacities. A Report from the U.N. Environment Programme and WHO. Environment 36: 5–37.
[22]  Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, et al. (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55: 24–35.
[23]  Nemmar A, Hoet PHM, Vermylen J, Nemery B, Hoylaerts MF (2004) Pharmacological stabilization of mast cells abrogates late thrombotic events induced by diesel exhaust particles in hamsters. Circulation 110: 1670–1677.
[24]  Nemmar A, Melghit K, Ali BH (2008) The Acute Proinflammatory and Prothrombotic Effects of Pulmonary Exposure to Rutile TiO2 Nanorods in Rats. Exp Biol Med (Maywood ) 233: 610–619.
[25]  Kido T, Tamagawa E, Bai N, Suda K, Yang HH, et al. (2010) Particulate Matter Induces IL-6 Translocation from the Lung to the Systemic Circulation. Am J Respir Cell Mol Biol.
[26]  Nemmar A, Al Salam S, Zia S, Yasin J, Al Husseni I, et al. (2010) Diesel Exhaust Particles in the Lung Aggravate Experimental Acute Renal Failure. Toxicological Sciences 113: 267–277.
[27]  Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, et al. (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 159: 702–709.
[28]  Behndig AF, Mudway IS, Brown JL, Stenfors N, Helleday R, et al. (2006) Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respir J 27: 359–365.
[29]  Budinger GRS, Mckell JL, Urich D, Foiles N, Weiss I, et al. (2011) Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms. Plos One 6.
[30]  Delfino RJ, Staimer N, Tjoa T, Gillen DL, Polidori A, et al. (2009) Air Pollution Exposures and Circulating Biomarkers of Effect in a Susceptible Population: Clues to Potential Causal Component Mixtures and Mechanisms. Environ Health Perspect 117: 1232–1238.
[31]  Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, et al. (2009) Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54: 659–667.
[32]  Nemmar A, Al Salam S, Dhanasekaran S, Sudhadevi M, Ali BH (2009) Pulmonary exposure to diesel exhaust particles promotes cerebral microvessel thrombosis: Protective effect of a cysteine prodrug L-2-oxothiazolidine-4-carboxylic acid. Toxicology 263: 84–92.
[33]  Nordenhall C, Pourazar J, Ledin MC, Levin JO, Sandstrom T, et al. (2001) Diesel exhaust enhances airway responsiveness in asthmatic subjects. Eur Respir J 17: 909–915.
[34]  Salam MT, Islam T, Gilliland FD (2008) Recent evidence for adverse effects of residential proximity to traffic sources on asthma. Curr Opin Pulm Med 14: 3–8. 10.1097/MCP.0b013e3282f1987a [doi];00063198-200801000-00003 [pii].
[35]  Sallam N, Khazaei M, Laher I (2010) Effect of moderate-intensity exercise on plasma C-reactive protein and aortic endothelial function in type 2 diabetic mice. Mediators Inflamm 2010: 149678. 10.1155/2010/149678 [doi].
[36]  Park NY, Park SK, Lim Y (2011) Long-term dietary antioxidant cocktail supplementation effectively reduces renal inflammation in diabetic mice. Br J Nutr 106: 1514–1521. S0007114511001929 [pii];10.1017/S0007114511001929 [doi].
[37]  Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54: 24–38.
[38]  Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, et al. (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351: 2599-2610. 351/25/2599 [pii];10.1056/NEJMoa040967 [doi].
[39]  Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, et al. (2008) Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect 116: 898-906. 10.1289/ehp.11189 [doi].
[40]  Brook RD, Rajagopalan S (2009) Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens 3: 332–350. S1933-1711(09)00105-3 [pii];10.1016/j.jash.2009.08.005 [doi].
[41]  Sun Q, Hong X, Wold LE (2010) Cardiovascular effects of ambient particulate air pollution exposure. Circulation 121: 2755–2765.
[42]  Ruckerl R, Phipps RP, Schneider A, Frampton M, Cyrys J, Oberdorster G, Wichmann HE, Peters A (2007) Ultrafine particles and platelet activation in patients with coronary heart disease-results from a prospective panel study. Part Fibre Toxicol 4: 1.
[43]  Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473: 317-325. nature10146 [pii];10.1038/nature10146 [doi].
[44]  Yeh ET (2004) CRP as a mediator of disease. Circulation 109: II11–II14. 10.1161/01.CIR.0000129507.12719.80 [doi];109/21_suppl_1/II-11 [pii].
[45]  Thogersen AM, Jansson JH, Boman K, Nilsson TK, Weinehall L, et al. (1998) High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 98: 2241–2247.
[46]  Cesari M, Pahor M, Incalzi RA (2010) Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 28: e72–e91. CDR171 [pii];10.1111/j.1755-5922.2010.00171.x [doi].
[47]  Ridker PM, Hennekens CH, Cerskus A, Stampfer MJ (1994) Plasma concentration of cross-linked fibrin degradation product (D-dimer) and the risk of future myocardial infarction among apparently healthy men. Circulation 90: 2236–2240.
[48]  Lowe GD, Rumley A (1999) Use of fibrinogen and fibrin D-dimer in prediction of arterial thrombotic events. Thromb Haemost 82: 667-672. 99080667 [pii].
[49]  Ruckerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, et al. (2006) Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med 173: 432–441.
[50]  Epstein JA (2008) Currying favor for the heart. J Clin Invest 118: 850–852. 10.1172/JCI34650 [doi].
[51]  Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, et al. (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21: 2895–2900.
[52]  Su CC, Yang JS, Lu CC, Chiang JH, Wu CL, et al. (2010) Curcumin inhibits human lung large cell carcinoma cancer tumour growth in a murine xenograft model. Phytother Res 24: 189–192. 10.1002/ptr.2905 [doi].
[53]  Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, et al. (2009) Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. Am J Physiol Renal Physiol 296: F1146-F1157. 90732.2008 [pii];10.1152/ajprenal.90732.2008 [doi].
[54]  Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, et al. (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118: 868-878. 10.1172/JCI33160 [doi].
[55]  Gruber F, Hufnagl P, Hofer-Warbinek R, Schmid JA, Breuss JM, et al. (2003) Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) promoter regulates TNF alpha-induced PAI-1 expression. Blood 101: 3042–3048. 10.1182/blood-2002-07-2331 [doi];2002-07-2331 [pii].
[56]  Yamashita M, Yamashita M (1997) Tumor necrosis factor alpha is involved in the induction of plasminogen activator inhibitor-1 by endotoxin. Thromb Res 87: 165–170. S0049-3848(97)00116-3 [pii].
[57]  Hou B, Eren M, Painter CA, Covington JW, Dixon JD, et al. (2004) Tumor necrosis factor alpha activates the human plasminogen activator inhibitor-1 gene through a distal nuclear factor kappaB site. J Biol Chem 279: 18127–18136. 10.1074/jbc.M310438200 [doi]; M310438200 [pii].
[58]  Plomgaard P, Keller P, Keller C, Pedersen BK (2005) TNF-alpha, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue. J Appl Physiol 98: 2019–2023. 01220.2004 [pii];10.1152/japplphysiol.01220.2004 [doi].
[59]  Nemmar A, Al Salam S, Zia S, Dhanasekaran S, Shudadevi M, et al. (2010) Time-course effects of systemically administered diesel exhaust particles in rats. Toxicol Lett. 194: 58–65.
[60]  Suresh MV, Wagner MC, Rosania GR, Stringer KA, Min KA, et al. (2012) Pulmonary Administration of Water-soluble Curcumin Complex Reduces ALI Severity. Am J Respir Cell Mol Biol. rcmb.2011-0175OC [pii];10.1165/rcmb.2011-0175OC [doi].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133