全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

WHO 2010 Guidelines for Prevention of Mother-to-Child HIV Transmission in Zimbabwe: Modeling Clinical Outcomes in Infants and Mothers

DOI: 10.1371/journal.pone.0020224

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The Zimbabwean national prevention of mother-to-child HIV transmission (PMTCT) program provided primarily single-dose nevirapine (sdNVP) from 2002–2009 and is currently replacing sdNVP with more effective antiretroviral (ARV) regimens. Methods Published HIV and PMTCT models, with local trial and programmatic data, were used to simulate a cohort of HIV-infected, pregnant/breastfeeding women in Zimbabwe (mean age 24.0 years, mean CD4 451 cells/μL). We compared five PMTCT regimens at a fixed level of PMTCT medication uptake: 1) no antenatal ARVs (comparator); 2) sdNVP; 3) WHO 2010 guidelines using “Option A” (zidovudine during pregnancy/infant NVP during breastfeeding for women without advanced HIV disease; lifelong 3-drug antiretroviral therapy (ART) for women with advanced disease); 4) WHO “Option B” (ART during pregnancy/breastfeeding without advanced disease; lifelong ART with advanced disease); and 5) “Option B+:” lifelong ART for all pregnant/breastfeeding, HIV-infected women. Pediatric (4–6 week and 18-month infection risk, 2-year survival) and maternal (2- and 5-year survival, life expectancy from delivery) outcomes were projected. Results Eighteen-month pediatric infection risks ranged from 25.8% (no antenatal ARVs) to 10.9% (Options B/B+). Although maternal short-term outcomes (2- and 5-year survival) varied only slightly by regimen, maternal life expectancy was reduced after receipt of sdNVP (13.8 years) or Option B (13.9 years) compared to no antenatal ARVs (14.0 years), Option A (14.0 years), or Option B+ (14.5 years). Conclusions Replacement of sdNVP with currently recommended regimens for PMTCT (WHO Options A, B, or B+) is necessary to reduce infant HIV infection risk in Zimbabwe. The planned transition to Option A may also improve both pediatric and maternal outcomes.

References

[1]  Nduati R, John G, Mbori-Ngacha D, Richardson B, Overbaugh J, et al. (2000) Effect of breastfeeding and formula feeding on transmission of HIV-1: a randomized clinical trial. JAMA 283: 1167–1174.
[2]  Coutsoudis A, Dabis F, Fawzi W, Gaillard P, Haverkamp G, et al. (2004) Late postnatal transmission of HIV-1 in breast-fed children: an individual patient data meta-analysis. J Infect Dis 189: 2154–2166.
[3]  Leroy V, Sakarovitch C, Cortina-Borja M, McIntyre J, Coovadia H, et al. (2005) Is there a difference in the efficacy of peripartum antiretroviral regimens in reducing mother-to-child transmission of HIV in Africa? AIDS 19: 1865–1875.
[4]  Thior I, Lockman S, Smeaton LM, Shapiro RL, Wester C, et al. (2006) Breastfeeding plus infant zidovudine prophylaxis for 6 months vs formula feeding plus infant zidovudine for 1 month to reduce mother-to-child HIV transmission in Botswana: a randomized trial: the Mashi Study. JAMA 296: 794–805.
[5]  Dabis F, Bequet L, Ekouevi DK, Viho I, Rouet F, et al. (2005) Field efficacy of zidovudine, lamivudine and single-dose nevirapine to prevent peripartum HIV transmission. AIDS 19: 309–318.
[6]  Marston M, Becquet R, Zaba B, Moulton LH, Gray G, et al. (2011) Net survival of perinatally and postnatally HIV-infected children: a pooled analysis of individual data from sub-Saharan Africa. Int J Epidemiol. Epub ahead of press.
[7]  Marazzi MC, Liotta G, Haswell J, Zimba I, Nielsen-Saines K, et al. TUAC101: Extended use of highly active antiretroviral therapy (HAART) during pregnancy in Southern Africa is highly protective in HIV-1 prevention of mother-to-child-transmission (PMTCT) also in women with higher CD4 cell counts 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Cape Town, South Africa, 2009. Available: http://www.ias2009.org/pag/Abstracts.asp?x?AID=2013.
[8]  Kesho Bora Study Group (2011) Triple antiretroviral compared with zidovudine and single-dose nevirapine prophylaxis during pregnancy and breastfeeding for prevention of mother-to-child transmission of HIV-1 (Kesho Bora study): a randomised controlled trial. Lancet Infect Dis. Epub ahead of press.
[9]  Chasela CS, Hudgens MG, Jamieson DJ, Kayira D, Hosseinipour MC, et al. (2010) Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N Engl J Med 362: 2271–2281.
[10]  Shapiro RL, Hughes MD, Ogwu A, Kitch D, Lockman S, et al. (2010) Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N Engl J Med 362: 2282–2294.
[11]  World Health Organization (2010) Antiretroviral drugs for treating pregnant women and preventing HIV infection in infants: towards universal access. Available: http://whqlibdoc.who.int/publications/20?10/9789241599818_eng.pdf. Accessed February 21, 2011.
[12]  Schouten E, and Department of HIV and AIDS Ministry of Health M Making it Happen: Revising national policies to reflect changes in WHO recommendations for preventing vertical transmission of HIV –Malawi. International AIDS Society, Vienna, Austria, 2010. Available: http://www.pedaids.org/Press-Room/Events?/2010/IAS-2010-WHO-Satellite-Session/5_M?aking-it-Happen_Revising-national-polici?es-to-r.
[13]  World Health Organization (2010) Towards universal access: Scaling up priority HIV/AIDS interventions in the health sector. Progress Report. Available: http://www.who.int/hiv/pub/2010progressr?eport/report/en/index.html. Accessed February 21, 2011.
[14]  World Health Organization (2006) Antiretroviral drugs for treating pregnant women and preventing HIV infections in infants in resource-limited settings: towards universal access - recommendations for a public health approach. Available: http://www.who.int/hiv/pub/guidelines/pm?tct/en/index.html. Accessed March 1, 2009.
[15]  Mofenson L, Taha T, Li Q, Kumwenda J, Kafulafula G, et al. for the PEPI Malawi Study GroupTUPEC053: Infant extended antiretroviral (ARV) prophylaxis is effective in preventing postnatal mother-to-child HIV transmission (MTCT) at all maternal CD4 counts International AIDS Society, Cape Town, South Africa, 2009. Available: http://www.ias2009.org/pag/Abstracts.asp?x?AID=1251.
[16]  Kuhn L, Aldrovandi GM, Sinkala M, Kankasa C, Semrau K, et al. (2008) Effects of early, abrupt weaning on HIV-free survival of children in Zambia. N Engl J Med 359: 130–141.
[17]  Guay LA, Musoke P, Fleming T, Bagenda D, Allen M, et al. (1999) Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet 354: 795–802.
[18]  Lockman S, Shapiro RL, Smeaton LM, Wester C, Thior I, et al. (2007) Response to antiretroviral therapy after a single, peripartum dose of nevirapine. N Engl J Med 356: 135–147.
[19]  Arrive E, Newell ML, Ekouevi DK, Chaix ML, Thiebaut R, et al. (2007) Prevalence of resistance to nevirapine in mothers and children after single-dose exposure to prevent vertical transmission of HIV-1: a meta-analysis. Int J Epidemiol 36: 1009–1021.
[20]  World Bank (2009) Data and statistics: Country classification. Available: http://web.worldbank.org/WBSITE/EXTERNAL?/DATASTATISTICS/0,contentMDK:20420458~menuPK:64133156~page?PK:64133150~piPK:64133175~theSitePK:2394?19,00.html. Accessed February 1, 2010.
[21]  Iliff PJ, Piwoz EG, Tavengwa NV, Zunguza CD, Marinda ET, et al. (2005) Early exclusive breastfeeding reduces the risk of postnatal HIV-1 transmission and increases HIV-free survival. AIDS 19: 699–708.
[22]  Perez F, Orne-Gliemann J, Mukotekwa T, Miller A, Glenshaw M, et al. (2004) Prevention of mother to child transmission of HIV: evaluation of a pilot programme in a district hospital in rural Zimbabwe. BMJ 329: 1147–1150.
[23]  Engelsmann B, Shumba M, Maruva M, Keatinge J, Miller A, Mahomva A, Mbizvo E, Mashumba S, Perez F, Wilfert C, Dabis FMOPE0521: Enhancing the uptake of antiretroviral drugs for PMTCT through more complex regimens. International AIDS Society, Mexico City, 2008. Available: http://www.aids2008-abstracts.org/aids20?08_book_vol1_web.pdf, page 174.
[24]  Ciaranello AL, Seage GR 3rd, Freedberg KA, Weinstein MC, Lockman S, et al. (2008) Antiretroviral drugs for preventing mother-to-child transmission of HIV in sub-Saharan Africa: balancing efficacy and infant toxicity. AIDS 22: 2359–2369.
[25]  Goldie SJ, Yazdanpanah Y, Losina E, Weinstein MC, Anglaret X, et al. (2006) Cost-effectiveness of HIV treatment in resource-poor settings–the case of C?te d'Ivoire. N Engl J Med 355: 1141–1153.
[26]  Walensky RP, Wolf LL, Wood R, Fofana MO, Freedberg KA, et al. (2009) When to start antiretroviral therapy in resource-limited settings. Ann Intern Med 151: 157–166.
[27]  Zimbabwe Ministry of Health and Child Welfare Zimbabwe (2008) Maternal and Perinatal Mortality Study 2007.
[28]  National Institutes of Health: IMPAACT Trial Network (2010) P1077: The PROMISE Study (Promoting Maternal and Infant Survival Everywhere): Synopsis. Available: http://www.impaactgroup.org/files/IMPAAC?T_P1077_Synopsis.doc. Accessed February 21, 2011.
[29]  Ciaranello A, Lockman S, Freedberg KA, Hughes M, Chu J, et al. (2011) First-line antiretroviral therapy after single-dose nevirapine exposure in South Africa: A cost-effectiveness analysis of the OCTANE trial. AIDS 25: 479–492.
[30]  El-Sadr WM, Lundgren JD, Neaton JD, Gordin F, Abrams D, et al. (2006) CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 355: 2283–2296.
[31]  Danel C, Moh R, Minga A, Anzian A, Ba-Gomis O, et al. (2006) CD4-guided structured antiretroviral treatment interruption strategy in HIV-infected adults in west Africa (Trivacan ANRS 1269 trial): a randomised trial. Lancet 367: 1981–1989.
[32]  Kesho Bora Study GroupThLBB105: Impact of Triple-ARV prophylaxis during pregnancy and breastfeeding compared with short-ARV prophylaxis for MTCT prevention on maternal disease progression. International AIDS Society, Vienna, Austria, 2010. Available: http://pag.aids2010.org/Abstracts.aspx?S?ID=644&AID=17446.
[33]  Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, et al. (2004) Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 364: 1236–1243.
[34]  Zaba B, Whitworth J, Marston M, Nakiyingi J, Ruberantwari A, et al. (2005) HIV and mortality of mothers and children: evidence from cohort studies in Uganda, Tanzania, and Malawi. Epidemiology 16: 275–280.
[35]  Zimbabwe Ministry of Health and Child Welfare (2009) National Drug and Therapeutics Policy Advisory Committee (NDTPAC) & AIDS and TB Unit. Guidelines for Antiretroviral Therapy in Zimbabwe.
[36]  Manzi M, Zachariah R, Teck R, Buhendwa L, Kazima J, et al. (2005) High acceptability of voluntary counselling and HIV-testing but unacceptable loss to follow up in a prevention of mother-to-child HIV transmission programme in rural Malawi: scaling-up requires a different way of acting. Trop Med Int Health 10: 1242–1250.
[37]  Geng EH, Bangsberg DR, Musinguzi N, Emenyonu N, Bwana MB, et al. (2010) Understanding reasons for and outcomes of patients lost to follow-up in antiretroviral therapy programs in Africa through a sampling-based approach. J Acquir Immune Defic Syndr 53: 405–411.
[38]  Brinkhof MWG, Dabis F, Myer L, Bangsberg DR, Boulle A, et al. (2008) Early loss of HIV-infected patients on potent antiretroviral therapy programmes in lower-income countries. Bulletin of the World Health Organization 86: 559–567.
[39]  Zimbabwe Ministry of Health (2009) National HIV Estimates, 2009.
[40]  Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, et al. (1997) Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 126: 946–954.
[41]  Lawn SD, Myer L, Orrell C, Bekker LG, Wood R (2005) Early mortality among adults accessing a community-based antiretroviral service in South Africa: implications for programme design. AIDS 19: 2141–2148.
[42]  United Nations (2009) World Population Prospects: The 2008 Revision. Available: http://esa.un.org/unpd/wpp2008/index.htm. Accessed February 21, 2011.
[43]  Carter RJ, Dugan K, El-Sadr WM, Myer L, Otieno J, et al. (2010) CD4+ Cell Count Testing More Effective Than HIV Disease Clinical Staging in Identifying Pregnant and Postpartum Women Eligible for Antiretroviral Therapy in Resource-Limited Settings. J Acquir Immune Defic Syndr 55: 404–410.
[44]  Ahoua L, Ayikoru H, Gnauck K, Odaru G, Odar E, et al. (2010) Evaluation of a 5-year programme to prevent mother-to-child transmission of HIV infection in Northern Uganda. J Trop Pediatr 56: 43–52.
[45]  Kaplan R, Orrell C, Zwane E, Bekker LG, Wood R (2008) Loss to follow-up and mortality among pregnant women referred to a community clinic for antiretroviral treatment. AIDS 22: 1679–1681.
[46]  Peltier CA, Ndayisaba GF, Lepage P, van Griensven J, Leroy V, et al. (2009) Breastfeeding with maternal antiretroviral therapy or formula feeding to prevent HIV postnatal mother-to-child transmission in Rwanda. AIDS 23: 2415–2423.
[47]  Stinson K, Boulle A, Coetzee D, Abrams EJ, Myer L (2010) Initiation of highly active antiretroviral therapy among pregnant women in Cape Town, South Africa. Trop Med Int Health 15: 825–832.
[48]  Kumwenda J, Mataya R, Kumwenda N, Kafulafula G, Li Q, Taha TWEPDD106: Coverage of highly active antiretroviral therapy (HAART) among postpartum women in Malawi International AIDS Society, Cape Town, South Africa, 2009. Available: http://www.ias2009.org/pag/Abstracts. aspx?AID=1938.
[49]  Lockman S, Hughes MD, McIntyre J, Zheng Y, Chipato T, et al. (2010) Antiretroviral therapies in women after single-dose nevirapine exposure. N Engl J Med 363: 1499–1509.
[50]  Coetzee D, Hildrebrand K, Boulle A, Maartens G, Louis F, et al. (2004) Outcomes after two years of providing antiretroviral treatment in Khayelitsha, South Africa. AIDS 18: 887–895.
[51]  Fawzi W, Msamanga G, Spiegelman D, Renjifo B, Bang H, et al. (2002) Transmission of HIV-1 through breastfeeding among women in Dar es Salaam, Tanzania. J Acquir Immune Defic Syndr 31: 331–338.
[52]  Chigwedere P, Seage GR, Lee TH, Essex M (2008) Efficacy of antiretroviral drugs in reducing mother-to-child transmission of HIV in Africa: a meta-analysis of published clinical trials. AIDS Res Hum Retroviruses 24: 827–837.
[53]  Coutsoudis A, Pillay K, Kuhn L, Spooner E, Tsai WY, et al. (2001) Method of feeding and transmission of HIV-1 from mothers to children by 15 months of age: prospective cohort study from Durban, South Africa. AIDS 15: 379–387.
[54]  Petra Study Team (2002) Efficacy of three short-course regimens of zidovudine and lamivudine in preventing early and late transmission of HIV-1 from mother to child in Tanzania, South Africa, and Uganda (Petra study): a randomised, double-blind, placebo-controlled trial. Lancet 359: 1178–1186.
[55]  Thistle P, Spitzer RF, Glazier RH, Pilon R, Arbess G, et al. (2007) A randomized, double-blind, placebo-controlled trial of combined nevirapine and zidovudine compared with nevirapine alone in the prevention of perinatal transmission of HIV in Zimbabwe. Clin Infect Dis 44: 111–119.
[56]  Palombi L, Marazzi MC, Voetberg A, Magid NA (2007) Treatment acceleration program and the experience of the DREAM program in prevention of mother-to-child transmission of HIV. AIDS 21: Suppl 4S65–71.
[57]  Thomas T, Masaba R, Ndivo R, Zeh C, Borkowf C, et al. for the Kisumu Breastfeeding Study Team45aLB: Prevention of mother-to-child transmission of HIV-1 among breastfeeding mothers using HAART: The Kisumu Breastfeeding Study, Kisumu, Kenya, 2003–2007. Conference on Retroviruses and Opportunistic Infections, Boston, 2008. Available: http://www.retroconference.org/2008/Abst?racts/33397.htm.
[58]  Kilewo C, Karlsson K, Ngarina M, Massawe A, Lyamuya E, et al. (2009) Prevention of mother-to-child transmission of HIV-1 through breastfeeding by treating mothers with triple antiretroviral therapy in Dar es Salaam, Tanzania: the Mitra Plus study. J Acquir Immune Defic Syndr 52: 406–416.
[59]  Kuhn L, Sinkala M, Kankasa C, Semrau K, Kasonde P, et al. (2007) High uptake of exclusive breastfeeding and reduced early post-natal HIV transmission. PLoS One 2: e1363.
[60]  Leroy V, Newell ML, Dabis F, Peckham C, Van de Perre P, et al. (1998) International multicentre pooled analysis of late postnatal mother-to-child transmission of HIV-1 infection. Ghent International Working Group on Mother-to-Child Transmission of HIV. Lancet 352: 597–600.
[61]  Vyankandondera J, Luchters S, Hassink E (2003) N°LB7: Reducing risk of HIV-1 transmission from mother to infant through breastfeeding using antiretroviral prophylaxis in infants (SIMBA-study). International AIDS Society, Paris, France.
[62]  Coutsoudis A, Pillay K, Spooner E, Kuhn L, Coovadia HM (1999) Influence of infant-feeding patterns on early mother-to-child transmission of HIV-1 in Durban, South Africa: a prospective cohort study. South African Vitamin A Study Group. Lancet 354: 471–476.
[63]  Marinda E, Humphrey JH, Iliff PJ, Mutasa K, Nathoo KJ, et al. (2007) Child Mortality According to Maternal and Infant HIV Status in Zimbabwe. Pediatr Infect Dis J 26: 519–526.
[64]  UNAIDS/UNICEF/WHO (2009) Children and AIDS: Fourth stocktaking report, actions and progress. Available: http://www.unicef.org/publications/index?_46585.html. Accessed February 21, 2011.
[65]  Sutcliffe CG, van Dijk JH, Bolton C, Persaud D, Moss WJ (2008) Effectiveness of antiretroviral therapy among HIV-infected children in sub-Saharan Africa. Lancet Infect Dis 8: 477–489.
[66]  Kids' ART-LINC Collaboration (2008) Low risk of death, but substantial program attrition, in pediatric HIV treatment cohorts in sub-Saharan Africa. J Acquir Immune Defic Syndr 49: 523–531.
[67]  Soorapanth S, Sansom S, Bulterys M, Besser M, Theron G, et al. (2006) Cost-effectiveness of HIV rescreening during late pregnancy to prevent mother-to-child HIV transmission in South Africa and other resource-limited settings. J Acquir Immune Defic Syndr 42: 213–221.
[68]  Beigi RH, Wiringa AE, Bailey RR, Assi TM, Lee BY (2009) Economic value of seasonal and pandemic influenza vaccination during pregnancy. Clin Infect Dis 49: 1784–1792.
[69]  Stringer JS, McConnell MS, Kiarie J, Bolu O, Anekthananon T, et al. (2010) Effectiveness of non-nucleoside reverse-transcriptase inhibitor-based antiretroviral therapy in women previously exposed to a single intrapartum dose of nevirapine: a multi-country, prospective cohort study. PLoS Med 7: Epub ahead of print.
[70]  Kuhn L, Semrau K, Ramachandran S, Sinkala M, Scott N, et al. (2009) Mortality and virologic outcomes after access to antiretroviral therapy among a cohort of HIV-infected women who received single-dose nevirapine in Lusaka, Zambia. J Acquir Immune Defic Syndr 52: 132–136.
[71]  Coovadia A, Hunt G, Abrams EJ, Sherman G, Meyers T, et al. (2009) Persistent Minority K103N Mutations among Women Exposed to Single-Dose Nevirapine and Virologic Response to Nonnucleoside Reverse-Transcriptase Inhibitor-Based Therapy. Clin Infect Dis 48: 462–472.
[72]  Lundgren JD, Babiker A, El-Sadr W, Emery S, Grund B, et al. (2008) Inferior clinical outcome of the CD4+ cell count-guided antiretroviral treatment interruption strategy in the SMART study: role of CD4+ Cell counts and HIV RNA levels during follow-up. J Infect Dis 197: 1145–1155.
[73]  Barker PM, Mphatswe W, Rollins N (2010) Antiretroviral drugs in the cupboard are not enough: The impact of health systems' performance on mother-to-child transmission of HIV. J Acquir Immune Defic Syndr 56: e45–48.
[74]  Meyer-Rath G, Violari A, Cotton M, Ndibongo B, Brenna A, Long L, Panchia R, Coovadia A, Gibb DM, Rosen S THLBB103: The cost of early vs. deferred paediatric antiretroviral treatment in South Africa - a comparative economic analysis of the first year of the CHER trial. International AIDS Society, Vienna, Austria, 2010. Available: http://pag.aids2010.org/Abstracts.aspx?S?ID=644&AID=17823.
[75]  Cleary S, Chitha W, Jikwana S, Okorafor OA, Boulle A (2005) Health Systems Trust: South African Health Review. Available: http://www.hst.org.za/generic/29. Accessed March 15, 2011.
[76]  Robberstad B, Evjen-Olsen B (2010) Preventing mother to child transmission of HIV with highly active antiretroviral treatment in Tanzania–a prospective cost-effectiveness study. J Acquir Immune Defic Syndr 55: 397–403.
[77]  Orlando S, Marazzi M, Mancinelli S, Liotta G, Ceffa S, et al. (2010) Cost-effectiveness of using HAART in prevention of mother-to-child transmission in the DREAM-Project Malawi. Journal of Acquired Immune Deficiency Syndromes 55: 631–634.
[78]  Johri M, Ako-Arrey D (2011) The cost-effectiveness of preventing mother-to-child transmission of HIV in low- and middle-income countries: systematic review. Cost Eff Resour Alloc 9: 3.
[79]  Mandala J, Torpey K, Kasonde P, Kabaso M, Dirks R, et al. (2009) Prevention of mother-to-child transmission of HIV in Zambia: implementing efficacious ARV regimens in primary health centers. BMC Public Health 9: 314.
[80]  Brinkhof MW, Dabis F, Myer L, Bangsberg DR, Boulle A, et al. (2008) Early loss of HIV-infected patients on potent antiretroviral therapy programmes in lower-income countries. Bull World Health Organ 86: 559–567.
[81]  Toro PL, Katyal M, Carter RJ, Myer L, El-Sadr WM, et al. (2010) Initiation of antiretroviral therapy among pregnant women in resource-limited countries: CD4+ cell count response and program retention. AIDS 24: 515–524.
[82]  Murphy RA, Sunpath H, Lu Z, Chelin N, Losina E, et al. (2010) Outcomes after virologic failure of first-line ART in South Africa. AIDS 24: 1007–1012.
[83]  Fawzi WW, Msamanga GI, Hunter D, Renjifo B, Antelman G, et al. (2002) Randomized trial of vitamin supplements in relation to transmission of HIV-1 through breastfeeding and early child mortality. AIDS 16: 1935–1944.
[84]  Leroy V, Karon JM, Alioum A, Ekpini ER, Meda N, et al. (2002) Twenty-four month efficacy of a maternal short-course zidovudine regimen to prevent mother-to-child transmission of HIV-1 in West Africa. AIDS 16: 631–641.
[85]  Kuhn L, Aldrovandi GM, Sinkala M, Kankasa C, Mwiya M, et al. (2010) Potential impact of new WHO criteria for antiretroviral treatment for prevention of mother-to- child HIV transmission. AIDS 24: 1374–1377. additional data at http://www.hivpresentation.com/index.cfm??vId=1375BB1328A1344-1423A-F1376F1377-C1?370DC1376EC1268CFF1357&cID=1375C1373B182?4B-1423A-F1376F1377-C1372E1378CE1379BBF1?379B1372D1392&show=slide.
[86]  Thistle P, Gottesman M, Pilon R, Glazier RH, Arbess G, et al. (2004) A randomized control trial of an Ultra-Short zidovudine regimen in the prevention of perinatal HIV transmission in rural Zimbabwe. Cent Afr J Med 50: 79–84.
[87]  Kesho Bora Study Group (2010) Eighteen-month follow-up of HIV-1-infected mothers and their children enrolled in the Kesho Bora study observational cohorts. J Acquir Immune Defic Syndr 54: 533–541.
[88]  Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, et al. (1994) Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 331: 1173–1180.
[89]  de Vincenzi I, Kesho Bora Study Group (2009) LBPEC01: Triple-antiretroviral (ARV) prophylaxis during pregnancy and breastfeeding compared to short-ARV prophylaxis to prevent mother-to-child transmission of HIV-1 (MTCT): the Kesho Bora randomized controlled clinical trial in five sites in Burkina Faso, Kenya 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Cape Town, South Africa. Available: http://www.ias2009.org/pag/Abstracts.asp?x?AID=3631.
[90]  Fassinou P, Elenga N, Rouet F, Laguide R, Kouakoussui KA, et al. (2004) Highly active antiretroviral therapies among HIV-1-infected children in Abidjan, C?te d'Ivoire. AIDS 18: 1905–1913.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133